BACKGROUND AND PURPOSE: Nocistatin (NST) is a neuropeptide generated from cleavage of the nociceptin/orphanin FQ (N/OFQ) precursor. Evidence has been presented that NST acts as a functional antagonist of N/OFQ, although NST receptor and transduction pathways have not yet been identified. We previously showed that N/OFQ inhibited [(3)H]5-hydroxytryptamine ([(3)H]5-HT) release from mouse cortical synaptosomes via activation of NOP receptors. We now investigate whether NST regulates [(3)H]5-HT release in the same preparation. EXPERIMENTAL APPROACH: Mouse and rat cerebrocortical synaptosomes in superfusion, preloaded with [(3)H]5-HT and stimulated with 1 min pulses of 10 mM KCl, were used. KEY RESULTS: Bovine NST (b-NST) inhibited the K(+)-induced [(3)H]5-HT release, displaying similar efficacy but lower potency than N/OFQ. b-NST action underwent concentration-dependent and time-dependent desensitization, and was not prevented either by the NOP receptor antagonist [Nphe(1) Arg(14),Lys(15)]N/OFQ(1-13)-NH(2) (UFP-101) or by the non-selective opioid receptor antagonist, naloxone. Contrary to N/OFQ, b-NST reduced [(3)H]5-HT release from synaptosomes obtained from NOP receptor knockout mice. However, both N/OFQ and NST were ineffective in synaptosomes pre-treated with the G(i/o) protein inhibitor, Pertussis toxin. NST-N/OFQ interactions were also investigated. Co-application of maximal concentrations of both peptides did not result in additive effects, whereas pre-application of maximal b-NST concentrations partially attenuated N/OFQ inhibition. CONCLUSIONS AND IMPLICATIONS: We conclude that b-NST inhibits [(3)H]5-HT release via activation of G(i/o) protein linked pathways, not involving classical opioid receptors and the NOP receptor. The present data strengthen the view that b-NST is, per se, a biologically active peptide endowed with agonist activity.
Nocistatin inhibits 5-hydroxytryptamine release in the mouse neocortex via presynaptic G i/o protein linked pathways
MORARI, Michele
2007
Abstract
BACKGROUND AND PURPOSE: Nocistatin (NST) is a neuropeptide generated from cleavage of the nociceptin/orphanin FQ (N/OFQ) precursor. Evidence has been presented that NST acts as a functional antagonist of N/OFQ, although NST receptor and transduction pathways have not yet been identified. We previously showed that N/OFQ inhibited [(3)H]5-hydroxytryptamine ([(3)H]5-HT) release from mouse cortical synaptosomes via activation of NOP receptors. We now investigate whether NST regulates [(3)H]5-HT release in the same preparation. EXPERIMENTAL APPROACH: Mouse and rat cerebrocortical synaptosomes in superfusion, preloaded with [(3)H]5-HT and stimulated with 1 min pulses of 10 mM KCl, were used. KEY RESULTS: Bovine NST (b-NST) inhibited the K(+)-induced [(3)H]5-HT release, displaying similar efficacy but lower potency than N/OFQ. b-NST action underwent concentration-dependent and time-dependent desensitization, and was not prevented either by the NOP receptor antagonist [Nphe(1) Arg(14),Lys(15)]N/OFQ(1-13)-NH(2) (UFP-101) or by the non-selective opioid receptor antagonist, naloxone. Contrary to N/OFQ, b-NST reduced [(3)H]5-HT release from synaptosomes obtained from NOP receptor knockout mice. However, both N/OFQ and NST were ineffective in synaptosomes pre-treated with the G(i/o) protein inhibitor, Pertussis toxin. NST-N/OFQ interactions were also investigated. Co-application of maximal concentrations of both peptides did not result in additive effects, whereas pre-application of maximal b-NST concentrations partially attenuated N/OFQ inhibition. CONCLUSIONS AND IMPLICATIONS: We conclude that b-NST inhibits [(3)H]5-HT release via activation of G(i/o) protein linked pathways, not involving classical opioid receptors and the NOP receptor. The present data strengthen the view that b-NST is, per se, a biologically active peptide endowed with agonist activity.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.