The aim of the present microdialysis study was to investigate whether the increase in striatal glutamate levels induced by intrastriatal perfusion with NMDA was dependent on the activation of extrastriatal loops and/or endogenous striatal substance P and dopamine. The NMDA-evoked striatal glutamate release was mediated by selective activation of the NMDA receptor-channel complex and action potential propagation, as it was prevented by local perfusion with dizocilpine and tetrodotoxin, respectively. Tetrodotoxin and bicuculline, perfused distally in the substantia nigra reticulata, prevented the NMDA-evoked striatal glutamate release, suggesting its dependence on ongoing neuronal activity and GABA(A) receptor activation, respectively, in the substantia nigra. The NMDA-evoked glutamate release was also dependent on striatal substance P and dopamine, as it was antagonized by intrastriatal perfusion with selective NK(1) (SR140333), D(1)-like (SCH23390) and D(2)-like (raclopride) receptor antagonists, as well as by striatal dopamine depletion. Furthermore, impairment of dopaminergic transmission unmasked a glutamatergic stimulation by submicromolar NMDA concentrations. We conclude that in vivo the NMDA-evoked striatal glutamate release is mediated by activation of striatofugal GABAergic neurons and requires activation of striatal NK(1) and dopamine receptors. Endogenous striatal dopamine inhibits or potentiates the NMDA action depending on the strength of the excitatory stimulus (i.e. the NMDA concentration).

Striatal glutamate release evoked in vivo by NMDA is dependent upon ongoing neuronal activity in the substantia nigra, endogenous striatal substance P and dopamine

MORARI, Michele
2005

Abstract

The aim of the present microdialysis study was to investigate whether the increase in striatal glutamate levels induced by intrastriatal perfusion with NMDA was dependent on the activation of extrastriatal loops and/or endogenous striatal substance P and dopamine. The NMDA-evoked striatal glutamate release was mediated by selective activation of the NMDA receptor-channel complex and action potential propagation, as it was prevented by local perfusion with dizocilpine and tetrodotoxin, respectively. Tetrodotoxin and bicuculline, perfused distally in the substantia nigra reticulata, prevented the NMDA-evoked striatal glutamate release, suggesting its dependence on ongoing neuronal activity and GABA(A) receptor activation, respectively, in the substantia nigra. The NMDA-evoked glutamate release was also dependent on striatal substance P and dopamine, as it was antagonized by intrastriatal perfusion with selective NK(1) (SR140333), D(1)-like (SCH23390) and D(2)-like (raclopride) receptor antagonists, as well as by striatal dopamine depletion. Furthermore, impairment of dopaminergic transmission unmasked a glutamatergic stimulation by submicromolar NMDA concentrations. We conclude that in vivo the NMDA-evoked striatal glutamate release is mediated by activation of striatofugal GABAergic neurons and requires activation of striatal NK(1) and dopamine receptors. Endogenous striatal dopamine inhibits or potentiates the NMDA action depending on the strength of the excitatory stimulus (i.e. the NMDA concentration).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3507654
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
  • OpenAlex ND
social impact