Artificial intelligence (AI)-based medical technologies are rapidly evolving into actionable solutions for clinical practice. Machine learning (ML) algorithms can process increasing amounts of laboratory data such as gene expression immunophenotyping data and biomarkers. In recent years, the analysis of ML has become particularly useful for the study of complex chronic diseases, such as rheumatic diseases, heterogenous conditions with multiple triggers. Numerous studies have used ML to classify patients and improve diagnosis, to stratify the risk and determine disease subtypes, as well as to discover biomarkers and gene signatures. This review aims to provide examples of ML models for specific rheumatic diseases using laboratory data and some insights into relevant strengths and limitations. A better understanding and future application of these analytical strategies could facilitate the development of precision medicine for rheumatic patients.

Artificial intelligence and laboratory data in rheumatic diseases

Galozzi P.
;
Basso D.;Padoan A.
2023

Abstract

Artificial intelligence (AI)-based medical technologies are rapidly evolving into actionable solutions for clinical practice. Machine learning (ML) algorithms can process increasing amounts of laboratory data such as gene expression immunophenotyping data and biomarkers. In recent years, the analysis of ML has become particularly useful for the study of complex chronic diseases, such as rheumatic diseases, heterogenous conditions with multiple triggers. Numerous studies have used ML to classify patients and improve diagnosis, to stratify the risk and determine disease subtypes, as well as to discover biomarkers and gene signatures. This review aims to provide examples of ML models for specific rheumatic diseases using laboratory data and some insights into relevant strengths and limitations. A better understanding and future application of these analytical strategies could facilitate the development of precision medicine for rheumatic patients.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0009898123001900-main.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 642.48 kB
Formato Adobe PDF
642.48 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3504620
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact