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A B S T R A C T   

Artificial intelligence (AI)-based medical technologies are rapidly evolving into actionable solutions for clinical 
practice. Machine learning (ML) algorithms can process increasing amounts of laboratory data such as gene 
expression immunophenotyping data and biomarkers. In recent years, the analysis of ML has become particularly 
useful for the study of complex chronic diseases, such as rheumatic diseases, heterogenous conditions with 
multiple triggers. Numerous studies have used ML to classify patients and improve diagnosis, to stratify the risk 
and determine disease subtypes, as well as to discover biomarkers and gene signatures. 

This review aims to provide examples of ML models for specific rheumatic diseases using laboratory data and 
some insights into relevant strengths and limitations. A better understanding and future application of these 
analytical strategies could facilitate the development of precision medicine for rheumatic patients.   

1. Introduction 

Laboratory Medicine is a discipline of medical sciences that deals 
with the analyses of body fluids, through the numerous existing labo
ratory investigations of biological samples. Despite the role of laboratory 
medicine in clinical decision making has been now widely and well 
recognized, less attention is sometimes paid to the importance of test 
results in the everyday human life. Indeed, laboratory medicine provides 
essential elements for subject’s health, often precociously with respect 
to the onset of symptoms, enabling risk stratification and offering the 
basis for personalized medicine [1]. Laboratory investigations play an 
increasingly fundamental role in all branches of medicine, from 
oncology to chronic disorders, like rheumatic diseases. 

Rheumatic diseases (RD) encompass a wide spectrum of heteroge
neous disorders that can involve not only the joints and the musculo
skeletal system, but also internal organs and other tissues. The diseases 
can be mainly divided into autoimmune and autoinflammatory disor
ders. Rheumatic autoimmune diseases, including rheumatoid arthritis 
(RA), systemic lupus erythematosus (SLE), Sjögren’s syndrome, psoriatic 
arthritis (PsA) and the systemic vasculitis, are chronic inflammatory 

disorders with multi-organ involvement. Complex interactions between 
a multitude of environmental and genetic factors affect disease devel
opment and progression [2]. Autoinflammatory diseases (SAIDs) are a 
group of disorders caused by dysregulation of the innate immune system 
resulting in excess pro-inflammatory cytokine secretion [3]. The clinical 
picture of SAIDs is extremely wide, ranging from recurrent and self- 
limiting fever episodes to chronic and persistent inflammatory disease 
course. SAIDs may exhibit multifactorial or Mendelian (recessive or 
dominant) inheritance [4]. The very fast development of validated as
says using innovative technologies, such as massive sequencing, has 
made it possible to focus on many different genes simultaneously. In 
addition to clinical anamnestic clues, this comprehensive approach can 
effectively aid to fulfil the diagnosis of complex and/or heterogeneous 
diseases. Further, new technologies for proteomics, metagenomics, and 
metabolomics are uncovering new aspects of these diseases at a rela
tively fast rate. In the last decades, these technic advancements, in 
parallel with knowledge improvements of the pathophysiology of dis
ease, have postulated a shift in the role of laboratory medicine towards 
predictive medicine and personalized health monitoring [5]. In future 
years, the convergence of artificial intelligence (AI), new technologies, 
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big data and “-omics” sciences could lead to solve the most difficult 
challenges facing precision medicine for rare diseases, determining also 
genomic determinants, avoiding patients’ diagnostic/therapeutic odys
seys [6]. 

In 2020, the European Alliance of Associations for Rheumatology 
(EULAR) published ten recommendations to guide the collection, anal
ysis and use of big data in rheumatic and musculoskeletal disorders [7]. 
The points to consider cover aspects of data sources and data collection, 
privacy by design, data platforms, data sharing and data analyses, in 
particular through artificial intelligence and machine learning. Indeed, 
combined clinical and omics data have limited utility without methods 
for their valuable interpretation. Artificial intelligence and machine 
learning (ML) techniques have the capacity to identify clinically relevant 
patterns amongst an abundance of information, fulfilling unmet needs. 

The AI and ML algorithms infer patterns from diverse clinical data 
types, including laboratory test results, patient symptoms or magnetic 
resonance imaging. The output of ML algorithms is the construction and 
application of a predictive model for classification, regression or clus
tering. In supervised learning, algorithms as are trained to recognise a 
pattern associated with a specific label becoming skilled at assigning this 
label to unseen data. Unsupervised learning algorithms instead attempts 
to find patterns within unlabelled data, for example by identifying 
clusters based upon the similarity. ML types and workflow are well 
reviewed elsewhere [8,9]. Successful ML requires robust and sufficiently 
abundant data to create a robust and generalisable model that can learn. 
Although the integration of data science and ML in rheumatology is at a 
nascent stage, ML has been applied to various data from clinical records 
to laboratory results. AI-based approached for RD included the analyse 
medical images, subtyping of patient cohorts based on medical notes, 
predict drug response and disease activity based on patient symptoms 
[10]. Recently, the importance of AI for automated image recognition 
and subtle patterns identification for diagnose and monitor RD pro
gression in routine clinical practice has been emphasized by some 
studies [11–12]. In this review, instead, we focus on ML-driven analysis 
on laboratory data only, derived from sequencing analysis, tran
scriptomics and proteomics experiments, flow cytometry assays and 
haematology tests. In this way, we address the integration of AI and 
laboratory medicine to improve rheumatic patient identification, risk 
stratification, and personalized treatment. 

2. Methods 

Relevant original papers including “machine learning” or “artificial 
intelligence” and rheumatic diseases’ names as search terms are iden
tified through database searching. The literature search was performed 
online using MEDLINE and completed in January 2023. 

Original studies that applied ML methods to laboratory data obtained 
from rheumatic diseases patients were included. Review papers, studies 
not written in English or not peer reviewed were excluded. AI- and ML- 
based studies retained in this review were further appraised in terms of 
reliability according to robustness of the methods used. The explanation 
of features generation prior model training, the choice of parameters, 
the reporting of databases and packages used, and the use of reliable 
approaches to deal with potential over-fitting has been checked. 

3. AI applications in rheumatic diseases 

In RD, AI has emerged as a promising tool in several aspects, from the 
ability to support decision-making to improve the quality of patients 
care [13]. In the last decades, attempt has been made to integrate ML in 
laboratory medicine analysis to stratify patient and improve diagnosis, 
to classify risk and determine disease subtypes, to enhance the precision 
care, to discover biomarkers and gene signature [14,15]. 

Of 746 papers identified in the literature search, 241 duplicates were 
removed, 122 records were excluded using the criteria described above 
and 343 were excluded because they did not use laboratory data in ML 

models (Fig. 1). Forty studies were included in this review [16–55] and 
their major characteristics are reported in Table 1. ML and AI are most 
commonly applied to autoimmune rheumatic diseases, as SLE, RA and 
PsA. Five studies, however, are referring to rare autoinflammatory dis
eases [23,35,47,51,52]. Random forests (RF), linear regression (LR) and 
support vector machine (SVM) were the most commonly used methods. 
Models employing genetic and transcriptomic data have been created 
for all diseases; very few papers used other laboratory data as antibody 
titres and serum metabolites [16,18,33,46,50,53]. 

The application of ML can be categorized into the seven broad topics 
discussed below: disease identification, assessing RD risk, disease sub
type classification, improving diagnosis, enhance precision care, bio
markers identification and clinical genomics analysis. 

3.1. Disease identification 

There are numerous classification criteria for RD that are constantly 
being updated to improve the quality of medical care [56]. These 
criteria, based on clinical symptoms and laboratory biomarkers, are used 
to distinguish between similar diseases and to confirm or exclude a 
particular disease based on inclusion and exclusion criteria. This can be 
difficult because many clinical and laboratory markers are non-specific 
and can be positive for many diseases. Different studies, as reported in 
Table 1, have used ML to classify patients with RD using laboratory data, 
as the optimisation scheme in ML can reduce variability in classification, 
leading to clinical standardisation. 

Of relevance, the development of AI and ML algorithms, being 
initially trained from available data, represent a challenge for rare dis
ease. Indeed, for some RD the prevalence of disease is so low that the 
inclusion of large cohort of patients is often “a mission impossible”. 
According to these considerations, laboratory test results could 
empower ML generation, not only by using retrospectively collected 
data of RD patients, but also offering the possibility of obtaining data of 
individuals not affected from RD, used as reference values. This might 
facilitate the solution of the rare disease diagnostic paradox: from one 
hand the discovery of the root molecular cause comes almost immedi
ately with the diagnosis itself, from the other hand the identification of 
SNP and genomic features it is not straightforward, each patient repre
senting a specific context [6]. 

Logistic regression and decision trees in conjunction with the feature 
selection “Forward Wrapper” were employed to classify patients with 
SLE with or without erosive arthritis [16]. SLE-related antibodies (anti- 
carbamylated proteins and anti-citrullinated peptide antibodies) and 
arthralgia resulted the most relevant features for the ML model, 
achieving an area under the curve (AUC) value of 0.806. An 

Fig. 1. The methodological flowchart.  
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Table 1 
Studies employing machine learning in laboratory data from RD patients.  

Publication Disease Aim/research question Data types Methods used Sample size Assessment Main findings Drawbacks 

Disease 
identification         

Oates 2005 [21] Lupus 
nephritis 

To use patterns of abundance 
of urine proteins to identify 
class and disease indices. 

Urine proteome artificial neural 
network 

20 patients AUC > 0.85 Successfully identified protein spots 
that can serve as surrogates for a renal 
biopsy 

Small sample size, need 
external validation 

Ceccarelli 2018 
[16] 

SLE To classify patients with or 
without erosive arthritis 

Autoantibodies data, clinical 
and treatment data 

LR, decision tree 120 SLE patients AUC = 0.806 Relevance of ACPA and anti-CarP in 
determining SLE-related erosive 
damage 

Small sample size; cross- 
sectional nature 

Figgett 2019  
[17] 

SLE To stratify SLE patients and 
identify disease-linked gene 
expression patterns 

RNA sequencing data k-means clustering, 
PLSDA, PCA, RF, ECOC 

161 SLE patients and 
57 controls 

RF accuracy = 88% Stratification of patients based on gene 
expression signatures may be a valuable 
strategy allowing the identification of 
separate molecular mechanisms 
underpinning disease 

Combining matching 
data needed 

Lu 2019 [18] SLE To evaluate clinical and 
immunologic factors 
associated with impending 
flare 

Autoantibodies and 32 
soluble mediators 

RF 41 SLE patients 88.67% accuracy Three subgroups of early flare patients, 
distinguished by greater baseline 
frequencies of aCD11b + monocytes, or 
CD86hi naïve B cells, or both 

Missing data 

Van 
Nieuwenhove 
2019 [20] 

JIA To identify JIA patients Immunophenotyping RF, artificial neural 
network, SVM 

72 JIA patients and 43 
controls 

iNKT cells AUC =
0.912 

immunological pattern comprised two 
components: a shared signature of 
inflammation and a smaller set of 
individual immune trait changes only in 
JIA 

Relatively limited use in 
diagnosis 

Pinal- 
Fernandez 
2020 [22] 

myositis To define unique gene 
expression profiles in muscle 
biopsies 

Transcriptomic data RF, linear SVM and 
other classification 
algorithms 

119 myositis patients; 
20 controls 

Linear SVM: >91% 
accuracy 

Usefulness of transcriptomics to tailor 
therapies to a specific molecular 
diagnosis 

Small sample size 

Jia 2020 [23] AOSD To investigate the clinical 
value of circulating NETs to 
distinguish AOSD patients 
with organ involvement and 
refractory to glucocorticoid 

Cell-free DNA, NE-DNA, 
MPO-DNA, and citH3-DNA 
complexes from serum 

SVM 66 AOSD patients and 
40 controls 

Distinguished AOSD 
AUC = 0.88; refractory 
AUC = 0.917 

Circulating NETs in plasma were closely 
correlated with systemic score, 
laboratory tests, and cytokines 

Small sample size 

Martin- 
Gutierrez 
2021 [19] 

SLE, 
Sjogren 
disease 

To identify distinct 
immunologic signatures to 
improve treatment selections 

Immunophenotyping data Supervised ML 
(balanced RF and 
sparse PLS-DA) and LR 
followed by k-means 
clustering 

88 SLE/Sjogren 
patients and 31 
controls 

AUC = 0.9979 A signature of 8 T cell subsets distinctly 
differentiates the two endotypes 

Sex and disease activity 
biases 

Risk 
classification         

Almlöf 2017  
[24] 

SLE To predict an individual’s SLE 
risk 

SNP genotype data RF 1160 SLE patients and 
2711 controls 

AUC = 0.94 Identified novel risk genes mainly 
expressed in B cells 

Only targets 
autoimmunity loci 

de la Calle 2021 
[25] 

UA, RA To investigate if alterations in 
the DNA methylation profiles 
of immune cells can predict 
the progression of UA to RA 

DNA methylome LR, RF, SVM 72 undifferentiated 
arthritis and 8 RA 
patients; 13 controls 

simplified models >
25CpG: >75% 
accuracy 

Potential early discriminants of 
methylation markers 

Small sample size 

Jalali- 
najafabadi 
2021 [26] 

PsA To assess the impact of 
confounders on feature 
selection using information 
theoretic methods and 
characterise the risk of 
developing PsA using ML in a 
UK PsA population 

Genomic data LR, AdaBoost, 
XGBOOST, RF, KNN, 
DT and Gaussian naive 
bayes 

1462 PsA patients AUC = 0.53–0.55 HLA_C_*06 and HLA_B_*27 were the 
most important genetic features for the 
stratification approach that can 
mitigate the impact of confounders 

Small sample size; cross- 
sectional nature of the 
dataset; potential 
phenotype 
misclassification 

Determine 
disease 
subtype         

(continued on next page) 
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Table 1 (continued ) 

Publication Disease Aim/research question Data types Methods used Sample size Assessment Main findings Drawbacks 

Kegerreis 2019  
[32] 

SLE To integrate gene expression 
data and used it to classify 
patients as having active or 
inactive disease 

Whole blood trascriptomic 
data 

Elastic GLM, KNN, RF 156 SLE patients RF accuracy = 83% Fine-tuning the algorithms to be 
informative as a standalone estimate of 
disease activity. 

Small sample size, data 
imbalanced 

Norgeot 2019  
[31] 

RA To build a model that would 
most accurately predict RA 
disease activity in the future 
clinical visit 

CRP, ESR and clinical/ 
demographic data from EHR 

Longitudinal Deep 
Learning Model 

820 RA patients AUROC = 0.74 Building accurate models to forecast 
complex disease outcomes using EHR 
data is possible 

The performance of the 
trained model was too 
low to be of immediate 
clinical utility 

Poppenberg 
2019 [34] 

JIA To predict JIA activity PBMCs RNA sequencing data KNN, RF, cSVM, gSVM 50 children with JIA RF AUC = 0.94 
(highest) 

The models performed well in patients 
of different ethnicity 

Small sample size 

Orange 2020  
[27] 

RA To refine histologic scoring of 
RA synovial tissue 

Histologic and transcriptional 
data 

SVM 123 RA patients High inflammatory 
subtype AUC = 0.88 

Identified 3 distinct molecular subtypes 
of RA that correlated with specific 
clinical phenotypes 

Small sample size, lack 
of normal synovial tissue 

Robinson 2020  
[28] 

SLE To characterize the immune 
cell profile of patients with 
juvenile-onset SLE and 
investigate links to the disease 
over time 

PBMCs flow cytometry data Supervised ML 
(balanced RF and 
sparse PLS-DA) 
followed by 
unsupervised k-means 
clustering 

67 SLE patients; 39 
controls 

89.6% sensitivity, 
82.1% specificity, AUC 
= 0.909 

Identified 4 potentially important 
subgroups among patients with SLE 

Small sample size; 
imperfect outcome 

Coelewij 2021  
[29] 

SLE To predict subclinical 
atherosclerosis in SLE patients 

Serum metabolomic data RF, LR with and 
without interaction, 
SVM, DT 

80 female SLE 
patients 

LR with interaction 
AUC = 0.812 (the 
highest) 

SLE patients with subclinical 
atherosclerosis plaques had a unique 
metabolomic profile associated with 
increased circulating VLDL subsets, 
leucine and tyrosine and reduced 
glycine. 

small sample size, lack 
information of sex 
hormone levels 

Hoi 2021 [33] SLE To generate an algorithm that 
could calculate via model 
fitting the presence of high 
disease activity 

Laboratory measures and 
demographic data 

Multinomial LR 286 SLE with 5,680 
visits 

AUC = 0.829 The ability to predict HDAS using 
simple laboratory measures and 
demographics is a useful application in 
healthcare settings where SLEDAI-2 K 
are not routinely performed 

Small sample size 

Sun 2022 [30] Gout To develop and validate a 
prediction model for renal 
urate underexcretion in male 
gout patients. 

Genomic data and clinical 
data 

linear SVC, SGD, LG 3261 male gout 
patients 

Classifier 11 variables 
AUC = 0.914 

4 SNPs and 7 clinical features 
contribute to gout 

SNPs not powerful 
enough, only Chinese 
men patients 

Improving 
diagnosis         

Patrick 2018  
[39] 

PsA To predict PsA among 
psoriasis patients 

Genomic data LR, LDA, MARS, RF, 
CIF 

>7000 PsA and PsC 
patients 

AUC = 0.82 nine new loci for psoriasis and psoriasis 
subtypes; robust prediction of PsA and 
PsC can be achieved using genetic data 
alone. 

ML analysis used 
different numbers of 
markers 

Ormseth 2020  
[38] 

RA To develop a miRNA panel to 
reliably differentiate between 
RA, SLE and controls 

sRNA sequencing RF 167 RA patients and 
91 controls 

RA AUC = 0.81, SLE 
AUC = 0.80 

The final panel (miR-22-3p, miR-24-3p, 
miR-96-5p, miR-134-5p, miR-140-3p, 
and miR-627-5p) is associated with 
pathways implicated in RA 
pathogenesis 

Not a diagnostic panel 

Mulder 2021  
[40] 

PsA To differentiate between 
psoriasis and psoriatic 
arthritis 

Immune profile from PB cells RF 41 PsA patients AUC = 0.95 The PsA-specific immune profile is 
defined by a reduced proportion of CD4 
and CD8 memory T-cell subsets, Treg 
cells and CD196 + and CD197 +
monocytes 

Differences in PASI score 
and DMARDs use at 
baseline 

Ha 2022 [35] CRMO, JIA, 
IFNpathies 

To improve the early diagnosis 
of pediatric rheumatic 
diseases and applying 
machine learning to develop 
predictive models 

Transcriptome data RF 48 pediatric 
rheumatic patients 

AUC = 0.80 mRNA from whole blood can provide 
adequate information for the 
differentiation. The activation and 
immune response of myeloid cells form 
participate in the biological pathways 

Small sample size; 
disease heterogeneity; 
batch effects not 
completely avoided 

(continued on next page) 
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Table 1 (continued ) 

Publication Disease Aim/research question Data types Methods used Sample size Assessment Main findings Drawbacks 

underlying JIA, CRMO and IFN-related 
diseases. 

Ma 2022 [43] SLE To seek for a feasible way for 
SLE accurate diagnosis 

Public single-cell RNA 
sequencing data, enriched 
with PBMCs dataset 
integration and cellular cross 
talking 

RF Large-scake dataset 
and 43 SLE patients 
and 8 controls 

AUC = 0.776 The interactions among the PBMC 
subpopulations of SLE patients may be 
weakened under the inflammatory 
microenvironment. The alterations of B 
cells and monocytes may be the most 
significant findings 

Other immune cell 
background noise 

Mc Ardle 2022  
[37] 

PsA To identify serum protein 
biomarkers that distinguish 
patients and may be used to 
support appropriate early 
intervention 

Proteomic data RF 127 PsA patients AUC = 0.79 The identified serum protein biomarker 
panel can separate patients 

Small sample size, 
absence of healthy and 
disease controls. 

Martorell- 
Marugan 
2023 [36] 

SLE, 
Sjogren 
disease 

To perform differential 
diagnosis of similar 
pathologies 

Transcriptome and 
methylome data 

Multiple decision trees 
(XGBoost) 

394 SLE/Sjogren 
patients and 257 
controls 

MCC = 0.5791 
(expression), MCC =
0.5546 (methylation) 

Patients assigned to a specific 
molecular cluster are misclassified 
more often and affect to the overall 
performance of the predictive models 

The prediction capacity 
depends on the 
molecular background 
of the patients. 

Enhance 
precision 
care         

Collins 2020  
[45] 

RA To derive a prediction score 
for remission in RA patients 
with TCZ monotherapy 

CRP, ESR, hematocrit and 
clinical/demographic data 
from 4 clinical trials 

LR 1019 RA patients AUROC = 0.736 in the 
OR-based model 

The score correlated well with 
remission at 24 weeks and was robust to 
different variable selection methods. 

Some inconsistency in 
variables between trials 

Johansson 
2021 [46] 

RA To derive a prediction score 
for remission in RA patients 
with TCZ monotherapy and 
external validated it 

ESR, hematocrit and clinical/ 
demographic data from 4 
clinical trials and real-world 
data 

LR, RF 1305 RA patients AUROC = 0.76 The remission prediction scores, 
derived in RCTs, discriminated patients 
in RWD about as well as in RCT 

Missing data 

Segú-Vergés 
2021 [47] 

sJIA, AOSD To investigate the optimal 
treat-to-target strategy for 
Still’s disease as a proof-of- 
concept of the modeling 
approach 

Trascriptomic data and 
treatment data 

TPMS (artifical 
neuronal networks and 
sampling-based 
methods) 

194 sJIA, 79 AOSD 
and 48 sJIA/AOSD 
patients 

Accuracy 94% More efficient role of canakinumab in 
the initial autoinflammatory/systemic 
phases that are dominated by innate 
immune deregulation 

Limited to data available 
in public databases 

Tao 2021 [43] RA To predict response to anti- 
TNF prior to treatment and to 
understand how RA patients 
differently respond to anti- 
TNF drugs 

RNA sequencing and DNA 
methylation data 

RF 80 RA patients RNA data accuracy 
ADA = 85.9% and ETN 
= 79%; methylation 
data accuracy ADA =
84.7% and ETN = 88% 

accurately predict the response before 
ADA and ETN treatment 

small sample size; not all 
patients completed 6 
months of treatment 

Yoosuf 2022  
[42] 

RA To detect biomarkers and 
signatures of treatment 
response to TNF inhibition 
expression 

Transcriptomic, proteomic 
and flow cytometry data 

Linear model (with L1 
and L2 regularization), 
RF, SVM with an RBF 
kernel 

39 female RA patients Linear model AUC =
0.68; RF AUC = 0.73; 
SVM AUC = 0.72 

Suggested new predictive models of 
anti-TNF treatment in RA patients 

Small sample size; 
patients were female 
only 

Myasoedova 
2022 [44] 

RA To test clinical and genomic 
biomarkers to predict MTX 
response in patients with early 
RA 

Genomic data, Demographic/ 
clinical data 

RF 643 RA patients Sensitivity = 72%, 
specificity = 77% 

Pharmacogenomic biomarkers 
combined with baseline DAS28 scores 
can be useful in predicting response to 
MTX in patients with early RA. 

Limited generalizability 

Biomarker 
discovery         

Swan 2015 [48] OA To identify putative 
biomarkers of O, articular 
cartilage degradation and 
synovial inflammation 

Proteomic and transcriptomic 
data 

RGIFE 193,079 genes 
(transcriptomics) and 
1500 genes 
(proteomics) 

accuracy > 84% RGIFE reduces to a small number of 
genes or proteins including those 
relevant to OA, cartilage degradation 
and joint inflammation 

bias between proteomic 
and trascriptomic 
dataset 

Zhao 2022 [49] Knee OA To identify new biomarkers to 
improve the accuracy of 
diagnosis and treatment. 

Transcriptomic data SVM, LR 74 samples from 
public database 

Combined AUC = 0.96 CX3CR1, SLC7A5, ARL4C, TLR7, and 
MTHFD2 show significant differences 
in cartilage, subchondrial bone and 
synovial tissue 

No tissue-specific 
biomarkers, scarce 
clinical information 

(continued on next page) 
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Table 1 (continued ) 

Publication Disease Aim/research question Data types Methods used Sample size Assessment Main findings Drawbacks 

Geng 2022 [50] RA To analyze and evaluate the 
effectiveness of the detection 
of single autoantibody and 
combined autoantibodies in 
RA 

Multiple autoantibodies and 
patient symptoms 

CSNN model 309 RA patients Sensitivity = 92%, 
specificity = 86%, 
accuracy = 90%, AUC 
= 0.90 

Simply relying on single antibody Error in the sensitivity of 
single autoantibody tests and combined multiple antibodies did 

not have high diagnostic sensitivity and 
specificity 

Clinical 
genomics 
analysis         

Briggs 2010  
[54] 

RA To investigated epistatic 
interactions with a well- 
established genetic factor 
(PTPN22 1858 T) in RA 

Genomic data LR, RF 1624 RA patients and 
2506 controls 

NA SNP variants within CDH13, MYO3A, 
CEP72 and near WFDC1 showed 
significant evidence for interaction 
with PTPN22, affecting susceptibility to 
RA. 

No clear standard 

Accetturo 2020  
[51] 

FMF To reduce the number of 
MEFV variants with 
ambiguous classification 

Genomic data REVEL 216 missense variants AUC = 0.879 Reclassification of 96 MEFV variants, 
reducing the VUS proportion from 
61.6% to 17.6% 

Small number of 
variants 

Catalina 2020  
[53] 

SLE To determine the contribution 
of genetics, serology, and 
clinical manifestations to gene 
expression profile 

Genomic and serological 
(autoantibodies and cell 
types) data 

LR, GLM, SVM 1566 SLE patients LR AUC = 0.94, GLM 
AUC = 0.97, SVM AUC 
= 0.91 

ML determines a gene signature 
characteristic to distinguish African 
ancestry SLE and was most influenced 
by genes characteristic of the perturbed 
B cell axis in patients 

Data can have complex 
and often contradictory 
effects 

Adato 2022  
[52] 

FMF To predict the mutation type 
carried by a patient based on 
the countries of origin to 
understand the epidemiology 
of FMF 

Genomic data LR 1781 FMF patients AUC = 0.67–0.86 A strong geographic association in 
North Africa for p.Met694Val, Europe 
for p.Val726Ala, and west Asia for p. 
Glu148Gln 

Low penetrance variants 
underrepresented 

Xiao 2022 [55] RA To investigate how 
neuropeptides and m6A 
played an important role in 
the underlying pathogenic 
processes of SFs that 
contribute to the development 
of RA 

Single-cell RNA sequencing 
data 

RF, SVM-RFE Two RA and two OA 
patients from public 
databases 

AUC = 0.667 Differential expression of 
neuropeptides GHR and NPR2 in SFs, 
influenced by the m6A methylation- 
related genes IGFBP2 and METTTL3 

Data were not validated 
at the single-cell level 

AOSD: adult onset Still’s disease; AUC: area under the curve; CIF: Canonical Interval Forest; CRMO: Chronic Recurrent Multifocal Osteomyelitis; CRP: C-reactive protein; CSNN: cost-sensitive neural network; DMARDs: 
disease-modifying antirheumatic drug; DT: decision tree; ECOC: error-correcting output code; EHR: electronic health registry; LDA: Linear Discriminant Analysis; ESR: erythrocyte sedimentation rate; FMF: Familial 
Mediterranean Fever; GLM: Generalized linear model; iNKT: Invariant natural killer T; JIA: juvenile idiopathic arthritis; KNN: K-nearest neighbor; LR: Logistic regression; MARS: Multivariate adaptive regression spline; na: 
not applicable; OA: osteoarthritis; PASI: Psoriasis Area Severity Index; PB: process-based; PBMCs: peripheral blood mononuclear cells; PCA: principal component analysis; PLS-DA: partial least squares discriminant 
analysis; PsA: psoriatic arthritis; PsC: psoriasis; RA: rheumatoid arthritis; RF: random forest; RGIFE: Real-Time Intermediate Flow Estimation; SGP: Stochastic Gradient Push; SLE: systemic lupus erythematosus; SVM: 
support vector machine; TCZ: tocilizumab; UA: undifferentiated arthritis. 
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unsupervised k-mean ML method identified four clusters in tran
scriptomic data of 30 SLE patients [17]. An SVM approach was then 
applied, confirming that the classification software was able to classify 
patients with 88% accuracy. Classification of early or late flare in 34 SLE 
patients was achieved by means of independent RF models, built using 
either gene expression data of immune pathways, autoantibodies and 
soluble mediators and immune cell subset from flow cytometry data 
[18]. ML models showed three subgroups of early flare patients, 
distinguished by greater baseline frequencies of activated CD11b +
monocytes, or CD86hi naïve B cells, or both. Similarly, a signature of 8 T 
cell subsets (total CD4 + and CD4 + Temra T cells, total CD8 + and CD8 
+ naïve, Tem, Temra, responder T cells, and CD25-CD127- T cells) was 
identified in ML models to distinctly differentiate SLE from primary 
Sjogren’s syndrome with high accuracy (AUC = 0.9979) [19]. The 
detected altered immunopathogenic processes had predictive value in 
determining long-term disease progression in terms of disease activity 
and damage. In addition, immune phenotyping data set from patients 
with juvenile idiopathic arthritis (JIA) was used to generate an algo
rithm capable of discriminating 72 JIA patients from 43 healthy controls 
with approximately 90% accuracy [20]. RF models identify invariant 
natural killer T cells as primary predictive immunological change in JIA 
(AUC = 91.18%). Urine test data was also used to build models for 
classification patients with renal disease of SLE (lupus nephritis) [21]. 
Neural networks were trained on normalized protein abundance to 
predict histological class with a sensitivity over 86%. The models 
identified six protein dots that can be used as a combined marker to 
classify patients with high sensitivity. ML models can also be trained on 
transcriptomic data to classify muscle biopsies from 119 patients with 
different types of myositis [22]. The SVM algorithm allowed for accurate 
classification in over 90% of muscle biopsies and also identified a gene 
expression profile uniquely overexpressed in different myositis patients, 
useful to tailor therapies. Due to the difficulty in diagnosing Adult-onset 
Still’s disease (AOSD) and the complexity of the disease features, the 
identification of predictive models to distinguish patients who are sus
ceptible to developing life-threatening complications is crucial. The use 
of neutrophil extracellular traps (NETs) as laboratory data for training 
ML algorithms to discriminate AOSD patients with organ involvement 
could be useful in this regard [23]. Support vector machines were used 
for modelling circulating NETs signature and found to distinguish AOSD 
patients from controls (AUC = 0.88) and stratify patients with liver and 
cardiopulmonary system involvement (AUC > 0.7). 

3.2. Risk classification 

Patients with RD frequently are at increased risk for future cardio
vascular (CV) events or pulmonary manifestation. Circulating markers, 
as Krebs von den Lungen-6 glycoprotein (KL-6), anti-citrullinated pep
tide antibodies and natriuretic peptides, could aid in CV or lung disease 
risk stratification as reported for systemic sclerosis [57] or rheumatoid 
arthritis [58,59]. Although the small sample size of these studies may 
limit the interpretation of the results, these non-invasive strategies using 
biomarkers may have the potential to facilitate risk assessment. 

In addition, AI offers the opportunity to make an early estimate of 
risk by exploiting the interactions between different risk factors and 
laboratory data. SNPs and genotype data can be used to identify disease 
risk markers, as reported by Almlöf and colleagues for SLE patients 
building a RF model [24]. The model identified 40 risk genes, half of 
which not previously linked to SLE. A small study assessed the DNA 
methylome of patients with undifferentiated arthritis using supervised 
and unsupervised methods to distinguish a methylation pattern as risk 
pattern to develop RA [25]. Despite the small sample size, a distinct 
methylation signature was observed, useful for detecting early disease 
determinants in these patients. Other authors studied the most appro
priate risk assessment method to select the optimum number of features 
from genomic data from PsA and psoriatic patients [26]. They applied 7 
supervised ML-based algorithms, identifying a stratification approach to 

mitigate the impact of confounding that lead to the expected identifi
cation of HLA-B*B27 as the predominant risk factor for PsA in psoriasis. 

3.3. Determine disease subtypes 

Due to the overlapping clinical features and the lack of specific 
diagnostic criteria for many RD, defining important subtypes of disease 
is of growing interest. However, validation of subtypes identified by 
supervised or cluster ML models is not easy to accomplish. 

ML models based on gene expression data from synovial biopsy 
samples have been used to refine histological subtyping of RA patients 
[27]. Consensus clustering revealed three clusters of patients: low-, 
mixed or high-inflammatory RA subtype based on histological evalua
tion. Synovial histological features of the same 45 biopsy samples were 
used as input data to train several binary SVM models to discriminate 
inflammation subtypes. The cross-validated model based on the histo
logical scores was successful in classifying the highly inflammatory 
subtype (AUC = 0.88). Robinson and colleagues applied supervised ML 
approaches for classifying and clustering 67 juvenile-onset SLE patients 
using both demographic and flow cytometry data [28]. Balanced RF and 
partial least squares discriminant analysis (PLS-DA) algorithms were 
able to select 28 immune cell subsets as important variables from pe
ripheral blood mononuclear cells (PBMCs). These variables were used as 
input to the k-means clustering algorithm that identified 4 clusters with 
differences in T cell frequencies among SLE patients. In 80 female SLE 
patients, it was possible to define subtypes of the disease based on the 
presence of lipoprotein-derived metabolites [29]. Different ML tools 
(univariate LR, lasso LR and RF) identified 4 metabolites associated with 
subclinical plaque. Logistic regression with interactions differentiated 
between patients with SLE with subclinical plaque and patients with SLE 
with no subclinical plaque groups with greatest accuracy of 0.800. Three 
ML prediction models for renal urate underexcretion in gout patients 
were built using reliable genetic variants and clinical data [30]. Four 
SNPs were selected as the most important contributors for clustering 
gout patients. Combining these SNPs to other 7 clinical features helped 
to optimize the models with AUC approximately 0.9. 

One of the main interests for clinicians and patients is the definition 
of the disease activity state. As many RD are rare disorders, this can be 
particularly challenging; however, ML holds specific promise to improve 
strategies from available laboratory information (Table 1). An earlier 
study used structured data from electronic health record data (i.e. dis
ease activity score, erythrocyte sedimentation rate and C reactive pro
tein levels, treatment data and autoantibodies dosage) to predict disease 
activity index in RA patients [31]. In another study, generalized linear 
model (GLM), RF, k-nearest neighbor (k-NN) and hierarchical clustering 
models using gene expression data were compared for their ability to 
accurately classify patients with active or inactive SLE in independent 
datasets [32]. The strong performance of the RF model suggests that 
nonlinear decision tree-based classification methods are most appro
priate for SLE diagnosis. In addition, routinely available laboratory data 
were suitable for creating an accurate model to calculate high disease 
activity in SLE patients [33]. Seven laboratory parameters and three 
demographic variables were found to be significantly associated with 
active disease building an algorithm with an accuracy of 88.6%. Four 
different ML approaches were used to create predictive models of JIA 
activity from by PBMCs transcriptome data [34]. Although the vari
ability of gene expression within patients is challenging, the ML models 
were able to predict JIA status well, with a training accuracy > 74% and 
a test accuracy > 78%. 

3.4. Improving diagnosis 

There is ample evidence that early diagnosis leads to better outcomes 
in patients with inflammatory rheumatic diseases and that the first 12 
weeks after the onset of symptoms represent a therapeutic window of 
opportunity [60,61]. There is great interest in applying ML to laboratory 
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data to obtain new tools for differential diagnostic approaches. For 
example, predictive RF models were built based on blood transcriptome 
data of 48 children with autoinflammatory diseases, 46 children with 
viral infection and 35 controls [35]. The cross-validation results 
confirmed that a model could differentiate paediatric RD from controls 
(AUC = 0.8) and from viral infection cases (AUC = 0.7). Moreover, other 
models could differentially distinguish RD with AUC > 0.8. Similarly, 
gene expression and methylation data from 651 individuals (SLE pa
tients, Sjogren’s syndrome patients and controls) were used with ML 
methodologies to predict the correct disease diagnosis [36]. Following a 
feature selection strategy, the authors identified the most informative 
subset of genes and methylated sites that improve the prediction model 
with a mean accuracy of 0.7926. Coupling cutting-edge serum prote
omics data with multivariate ML analysis, Mc Ardle and colleagues 
differentiated between PsA and RA patients with an AUC in the range of 
0.79–0.85 [37]. In another study, different ML algorithms were applied 
to select a microRNA panel that identified patients as having RA, SLE or 
neither disease [38]. A RF algorithm was used as a feature selection 
technique to identify differentially expressed microRNAs in 167 RA and 
91 control samples. Based on the results, six microRNAs were selected 
and the panel reliably distinguished between RA patients and controls 
with an AUC of 0.81. 

ML has also been employed to predict the insurgence of PsA among 
psoriasis patients utilizing 200 genetic markers of >7,000 patients [39]. 
The authors were able to identify nine new loci for psoriasis (AUC of 
0.82) and suggested that robust prediction of PsA can be achieved using 
genetic data alone. To discriminate PsA from psoriasis, it has been 
studied a disease-specific immune profile from the phenotype of pe
ripheral blood immune cells [40]. Using a RF-based algorithm coupled 
with in-deph flow cytometry, Mulder and colleagues found that PsA 
exhibited increased proportions of differentiated CD4 + CD196 +
CD183-CD194 + and CD4 + CD196-CD183-CD194 + T-cells and 
reduced proportions of CD196 + and CD197 + monocytes, memory CD4 
+ and CD8 + T-cell subsets and CD4 + regulatory T-cells (AUC = 0.95). 
Identification of altered levels of B cells and monocytes, subpopulations 
of PBMCs, in SLE patients was a useful information for building a RF 
model to distinguish patients from controls [41]. The model could 
accurately identify not only SLE (AUC = 0.776) but also RA (AUC =
0.967) and multiple sclerosis (AUC = 0.775) in PBMCs patient dataset. 
This ML model may be feasible for accurate diagnosis of chronic auto
immune diseases. 

3.5. Enhance precision care 

Personalised care is valuable for laboratory medicine, in general as 
well as for RD, characterized by variability within the disorders and 
presence of several comorbidities. The use of AI is a way to implement 
precision care and treatments. In a small cohort of 39 women with RA 
starting anti-TNF therapy, researchers assessed differences in multio
mics from PBMCs [42]. ML models using transcriptomic data at baseline 
showed high predictive utility in classifying RA patients based on 
response to anti-TNF treatment. Interestingly, transcriptomic data-based 
models predict response with higher accuracy compared with models 
with clinical data. Anti-TNF-therapy and other RA therapies, which is 
often determined in laboratory, require a careful assay evaluation since 
standardization of assays have not still achieved and well-defined 
consideration for defining clinical useful cut-off [62]. In a study from 
Tao et al., RF models were built to predict response to anti-TNF therapy 
in RA patients using expression and DNA methylation data from PBMCs 
[43]. Transcriptomics data built a model most accurate in predicting 
response to adalimumab, whereas the model with methylation data 
accurately predicted response to etanercept. Others have proposed the 
application of RF model to predict methotrexate response in patients 
with early RA [44]. In this model, the incorporation of genetic data in 
the prediction algorithm improved prediction accuracy with 72% of 
sensitivity. In addition, data from several randomized controlled trials 

(RCTs) in RA were examined and a remission prediction score for pa
tients treated with tocilizumab was derived and validated with AUCs 
showing good discrimination [45]. The study presented an accurate 
design and rigorous statistical analysis. The score correlated well with 
remission at 24 weeks and was robust to different variable selection 
methods. Interestingly, this prediction rule was subsequently tested in 
real-world data, finding that the RCT model could discriminate patients 
as well as the real-world model with AUC from 0.76 [46]. Combining 
artificial neuronal networks, sampling-based methods and AI, Segú- 
Vergés and colleagues create a model to identify optimal treat-to-target 
strategies for Still’s disease [47]. The expression data from systemic 
juvenile idiopathic arthritis and AOSD – two form of the Still’s disease – 
point towards a more efficient role of canakinumab in the initial phase of 
the disease to prevent the development of destructive complications. In 
lights of these insights, future development of personalized therapeutic 
treatments for RA might be defined using ML and disease genetic 
phenotypes. 

3.6. Biomarker discovery 

The comprehensive molecular phenotyping through omics data and 
ML appears a very attractive approach to identify emerging biomarkers 
to target novel treatment and to improve disease diagnosis. For OA, ML- 
based feature reduction methods were performed to identify biomarkers 
associated with the disease [48]. The RGIFE method described was 
tested on several proteomics OA datasets, identifying ten inflammatory- 
associated proteins known to be linked with cartilage matrix degrada
tion. The reduced transcriptomics datasets, instead, varied in size and 
utility, given the unknown function of a large number of identified 
genes. Another recent paper identified five potential useful diagnostic 
biomarkers related to knee OA in gene expression datasets [49]. The 
SVM model showed significant differences of these biomarkers in the 
cartilage and subchondral bone tissue. 

While not researching new biomarkers, the work of Geng and col
leagues [50] is interesting because it analysed and evaluated the effec
tiveness of the detection of single or combined autoantibodies in RA 
patients. The cost-sensitive neural network prediction (CSNN) model 
used had instead a high diagnostic sensitivity and specificity (0.90 and 
0.86, respectively), better that simply relying on single antibody and 
combined multiple antibodies. 

3.7. Clinical genomics analysis 

AI can improve the comprehensive analysis of a large volume of 
genetic data to address variant classification and to identify molecular 
relationships between complex features in the omics data and the RD. 
For rare autoinflammatory diseases, the use of AI methods to improve 
the classification of many uncertain significant gene variants could 
result in a more accurate diagnosis and a better interpretation of clinical 
consequences and drugs response. For example, variant interpretation of 
MEFV gene in Familial Mediterranean Fever (FMF) have been simplified 
and improved using REVEL (rare exome variant ensemble learner), a 
novel metapreditor tool [51]. The authors, calculating a REVEL score for 
all missense variants, proposed a reclassification of 96 MEFV variants, 
greatly reducing the variant of uncertain significance proportion from 
61.6% to 17.6%. A logistic regression approach can be used to determine 
the origin of different MEFV variants, suggesting that specific variants 
could be pathogenic in certain ethnicities [52]. For example, p. 
Met694Val showed an increased likelihood to be present in North Africa 
with an AUC of 0.86, while p.Val726Ala in Europe (AUC of 0.83). An 
additional study used ML to predict ancestry using gene expression data 
in SLE patients [53]. LR, SVM and GLM algorithms have been trained by 
752 genes known to discriminate patients by ancestry. The ML models 
accurately identified African ancestry SLE patients from their gene 
expression data and identified genes associated with B cells as important 
for distinguishing African ancestry SLE to European ancestry SLE 
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patients. In another study, RF and logistic regression were employed to 
predict genetic interactions between identified risk genes in RA [54]. 
The authors stated that the genetic contribution to RA risk is complex 
and novel candidate genes (CDH13, MYO3A, CEP72, WFDC1) were 
recognize to modify the effect of PTPN22-associated risk for RA. Simi
larly, ML was used to find genetic interactions between neuropeptide, 
N6-methyladenosine (m6A) and RA pathophysiology-related genes 
[55]. The SVM model showed the highest accuracy for predicting m6A 
factors associated with GHR and NPR2. 

4. Drawbacks of AI applications in RD 

Overall, different limitations have been found in every paper 
included in this review. The majority of the studies presented small 
sample size and are concentrated more on a single -omics component 
than on the integration of various data types and with clinical data. In 
the future, it will be crucial to gather larger, more representative sam
ples of multiomics data and completely include the various data types 
into ML models. A few studies have used multiomics data [42,48], but 
more rigorously designed longitudinal studies and a greater dataset will 
be required. It would be useful to have international large-scale pro
grams (e.g. European programs) that guarantee the ability to share the 
datasets of various specialized centers for rare diseases, as RD. This 
would require further efforts for overcoming privacy and legislative 
regulation issues. A bias by gender, disease activity or treatments was 
reported for some research that focused the analysis on specific patient 
subsets [19,30,40,42,49]. In these cases, the main findings should be 
assessed in the light of how missing data may affect the outcome of the 
ML analysis performed. 

5. Challenges 

ML is an effective and powerful way for analysing laboratory big 
data, as it can recognize scheme which are not so easy for humans to 
detect. However, multiple challenges need to be overcome for an effi
cient integration of AI and laboratory medicine to improve RD (Table 2). 

In particular, regulatory and ethical challenges to guarantee data 
privacy and patient safety appeared of particular relevance for RD [63]. 
Indeed, being these diseases rare, data need to be acquired from 
different hospitals of centres specialized for RD. In a recent paper about 
bioethics aspects of big data in RD, Manrique et al identified privacy, 
informed consent, impact on the medical profession and justice as main 
areas of concern [64]. To date, most ML studies are based on 

retrospective data, as they used existing datasets, sometimes not suffi
cient robust. The predictive power of a model depends on the quality of 
the data [65]; indeed the “mantra” garbage in, garbage out is often used 
to depict the concept that poor data quality returns useless results [66]. 
Thus, a careful pre-processing of dataset is essential, also when labora
tory tests results are queried by laboratory information system (LIS). 
Indeed, patient results could include non-numeric results that should be 
converted and anonymized before used [67]. Comparing multiple al
gorithms to find the most appropriate one for the dataset is a good 
practice to increase the confidence of the ML outcomes. It is also 
important to improve the awareness of health personnel about the 
strengths and weaknesses of data science, prompting the develop of 
digital skills and competences. ML can also prove challenging in the 
selection of the most appropriate algorithm a priori. This might require 
implementation of multiple ML models dependent on the desired out
comes, the specific type of data and the sample size. Although there are 
no cut-off limits for sample size, the general indication is the more the 
better [68]. Interpretation and identification of machine bias become 
quite challenges when complex and interdependent data are analysed 
[69]. Not all biases can be resolved using overrepresented training 
dataset, since they can be embedded into this data. Developing tools for 
addressing machine bias is necessary not only to solve these issues, but 
also to be free from human bias. A multidisciplinary approach by bio
informaticians, clinicians and laboratory staff in close collaboration may 
help to fit the interpretation [70]. However, the most important and yet 
most critical practical aspect of ML is model validation. In fact, 
biomedicine ML models may uncover relationship without biological 
meaning, derived from a reductionist approach or data noise. In this 
case, it is essential that the studies are rigorously and appropriated 
performed with larger open datasets. In medical settings, ML models 
frequently lack the ability to significantly generalize beyond their 
training distribution and may be prone to data leaking and overfitting. 
This makes external validation using a set of new data points that come 
from other cohorts, facilities, or repositories of utmost importance [71]. 

Other practical aspects have been determined to limit the develop
ment of AI and its tools, namely as ML, in clinical laboratories. In a 
recent survey conducted in medical laboratories, it has been shown that 
research on AI is limited by equipment not adequate for implementing 
high technological tasks, such as those required by AI. Although the lack 
of technological infrastructure might be due to a shortage of economic 
resources, the problem could not the be easily solved by updating 
computer software (such as laboratory LIS), since this action still might 
not benefit this issue [72]. Moreover, other important challenges have 
been raised during the 3rd Strategic Conference of the European 
Federation of Laboratory Medicine in 2022 [73]. It will be the re
sponsibility of laboratory experts to create the instruments, guidelines, 
and experimental methods that will improve the evaluation of the per
formance, quality, safety, and effectiveness of ML models used in patient 
care. In their well-reported work, Lennerz and colleagues present one 
such tool, a diagnostic quality model recommended for understanding 
the intricate details of clinical ML implementations [74]. Another key 
aspect is the development of user confidence in AI systems through ac
curacy, reproducibility and replicability [75]. Proving the reproduc
ibility and replicability of AI studies raises unique challenges. Release of 
datasets, source code, and trained models enables independent results 
verification [76]. This is also essential for facilitating the successful 
translation of ML applications into clinical practice. 

6. Future perspective 

During last few years, laboratory medicine has evolved to a highly 
technological medical discipline, generating large amount of data every 
year. As the next inevitable evolutional step, these big data sources are 
now meeting AI algorithms, that might assist us in data integration and 
making sense of the masses of diagnostic data collected [67,77]. Data, 
indeed, might come from several sources, as clinical, imaging or 

Table 2 
Limitation of machine learning.  

Challenges How they could be overcome 

Data privacy and patient safety Active involvement of health personnel; avoid 
providing full access to any potential interested 
entity 

Inter-operability of AI solutions Use of structured data 
Poor quality of the input data Careful pre-processing of data; comparing the 

algorithms to find the most appropriate for the 
dataset; larger datasets 

Correct algorithm selection Implementation of multiple ML models; several 
attempts based on the desired outcome, the 
type of data and the sample size 

Interpretation and identification 
of machine bias 

Multidiscliplinary approach to assess the results 

Validation of ML models Studies must be rigorously and appropriated 
performed; larger open datasets 

Reproducibility Perform cross validation; provide rationale for 
final model selection; include external 
validation for final method performance 
evaluation 

Clinical translation of ML 
application in laboratory 
medicine 

Interpret the results and performance of the 
selected model in relevant subgroups and 
clinical scenario  
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laboratory dataset, often not interoperable one another [78]. This is the 
case when clinical records are combined with diagnostic test results. The 
need to figure out how to combine and interpret those different data 
could be resolved with AI solutions, such as by using natural language 
processing (NLP) tools [14,15]. Regarding data integration, it should be 
mentioned that for combining data, some fundamentals standardization 
prerequisites should be achieved in each centre, such as the intercon
version of measurement unit, the specification of the analytical plat
forms, the sample collection and handling modality, etc… Thus, data 
integration is of fundamental importance for applying ML in RD and, 
more in general, in all rare diseases. 

Currently, there is an increasing number of AI algorithms that sup
port specific diagnostic tasks in different RD, paving the way for new 
perspective in biomedicine. A variety of other uses for ML are in various 
stages of development, including smart technology, wearables and 
health monitoring [79]. Additional ML applications have been devel
oped in other fields but could be translated for RD usage. For example, 
epigenetic biomarkers have been evaluated for cardiovascular diseases 
and cancer using omics data [80] and could be developed to study age- 
related inflammation in autoimmune rheumatic diseases or the reasons 
behind the different onset in autoinflammatory disorders. To unravel the 
full potential of these technologies, the poor ability to simultaneously 
incorporate multimodal data (i.e. omics, images and clinical data) 
should be overcome in the next few years. It will be important to collect 
these multimodal data on larger and more representative samples in 
rigorously designed studies for discovery and validation [67]. Newly ML 
methodologies have to be developed capable to handle this integrated 
information. The chatbot, as chatGPT, is headed in this direction. It can 
currently be considered a tool capable of detecting anomalies in labo
ratory parameters and understanding of laboratory medicine test results 
[81]. A soon-to-come improvement will be the use of chatbot for helping 
in trustworthy diagnosis of complex diseases (i.e. RD) from general 
symptoms and serological results. 

7. Conclusions 

The use of AI analytics for advances in RD research using laboratory 
data is in rapid expansion and implementation. Disease classification 
and subtyping and gene signature identification with ML might give an 
insight into the most appropriate treatment for each patient, improving 
personalized medicine. Care must be taken not to amplify potential 
biases, especially if dealing with rare RD. The combination of AI tech
nique and laboratory medicine can be used to better integrate evidence 
into practices. There are several challenges, but having good and diverse 
experts is essential to apply ML properly. 
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G. Nordmark, K. Tandre, M.-L. Eloranta, L. Padyukov, C. Bengtsson, A. Jönsen, S. 
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Helm-van Mil, J. Rodríguez-Ubreva, E. Ballestar, Prediction of the progression of 
undifferentiated arthritis to rheumatoid arthritis using DNA methylation profiling, 
arthritis, Rheumatol. 73 (2021) 2229–2239, https://doi.org/10.1002/art.41885. 

[26] F. Jalali-najafabadi, M. Stadler, N. Dand, D. Jadon, M. Soomro, P. Ho, H. Marzo- 
Ortega, P. Helliwell, E. Korendowych, M.A. Simpson, J. Packham, C.H. Smith, J. 
N. Barker, N. McHugh, R.B. Warren, A. Barton, J. Bowes, C.H. Smith, J.N. Barker, 
R.B. Warren, N. Dand, C.H. Smith, BADBIR Study Group, BSTOP study group, 
application of information theoretic feature selection and machine learning 
methods for the development of genetic risk prediction models, Sci. Rep. 11 (1) 
(2021), https://doi.org/10.1038/s41598-021-00854-x. 

[27] D.E. Orange, P. Agius, E.F. DiCarlo, N. Robine, H. Geiger, J. Szymonifka, 
M. McNamara, R. Cummings, K.M. Andersen, S. Mirza, M. Figgie, L.B. Ivashkiv, A. 
B. Pernis, C.S. Jiang, M.O. Frank, R.B. Darnell, N. Lingampali, W.H. Robinson, 
E. Gravallese, V.P. Bykerk, S.M. Goodman, L.T. Donlin, Identification of three 
rheumatoid arthritis disease subtypes by machine learning integration of synovial 
histologic features and RNA sequencing data, Arthritis Rheumatol. 70 (5) (2018) 
690–701. 

[28] G.A. Robinson, J. Peng, P. Dönnes, L. Coelewij, M. Naja, A. Radziszewska, 
C. Wincup, H. Peckham, D.A. Isenberg, Y. Ioannou, I. Pineda-Torra, C. Ciurtin, E. 
C. Jury, Disease-associated and patient-specific immune cell signatures in juvenile- 
onset systemic lupus erythematosus: patient stratification using a machine-learning 
approach, The Lancet, Rheumatology. 2 (2020) e485–e496, https://doi.org/ 
10.1016/S2665-9913(20)30168-5. 

[29] L. Coelewij, K.E. Waddington, G.A. Robinson, E. Chocano, T. McDonnell, 
F. Farinha, J. Peng, P. Dönnes, E. Smith, S. Croca, J. Bakshi, M. Griffin, 
A. Nicolaides, A. Rahman, E.C. Jury, I. Pineda-Torra, Serum metabolomic 
signatures can predict subclinical atherosclerosis in patients with systemic lupus 
erythematosus, Arterioscler. Thromb. Vasc. Biol. 41 (2021) 1446–1458, https:// 
doi.org/10.1161/ATVBAHA.120.315321. 

[30] M. Sun, W. Sun, X. Zhao, Z. Li, N. Dalbeth, A. Ji, Y. He, H. Qu, G. Zheng, L. Ma, 
J. Wang, Y. Shi, X. Fang, H. Chen, T.R. Merriman, C. Li, A machine learning- 
assisted model for renal urate underexcretion with genetic and clinical variables 
among Chinese men with gout, Arthritis Res. Ther. 24 (2022) 67, https://doi.org/ 
10.1186/s13075-022-02755-4. 

[31] B. Norgeot, B.S. Glicksberg, L. Trupin, D. Lituiev, M. Gianfrancesco, B. Oskotsky, 
G. Schmajuk, J. Yazdany, A.J. Butte, Assessment of a deep learning model based on 
electronic health record data to forecast clinical outcomes in patients with 
rheumatoid arthritis, JAMA Netw Open. 2 (3) (2019) e190606. 

[32] B. Kegerreis, M.D. Catalina, P. Bachali, N.S. Geraci, A.C. Labonte, C. Zeng, 
N. Stearrett, K.A. Crandall, P.E. Lipsky, A.C. Grammer, Machine learning 
approaches to predict lupus disease activity from gene expression data, Sci. Rep. 9 
(2019) 9617, https://doi.org/10.1038/s41598-019-45989-0. 

[33] A. Hoi, H.T. Nim, R. Koelmeyer, Y. Sun, A. Kao, O. Gunther, E. Morand, Algorithm 
for calculating high disease activity in SLE, Rheumatology. 60 (2021) 4291–4297, 
https://doi.org/10.1093/rheumatology/keab003. 

[34] K.E. Poppenberg, K. Jiang, L. Li, Y. Sun, H. Meng, C.A. Wallace, T. Hennon, J. 
N. Jarvis, The feasibility of developing biomarkers from peripheral blood 
mononuclear cell RNAseq data in children with juvenile idiopathic arthritis using 
machine learning approaches, Arthritis Res. Ther. 21 (2019) 230, https://doi.org/ 
10.1186/s13075-019-2010-z. 

[35] M.K. Ha, E. Bartholomeus, L. Van Os, J. Dandelooy, J. Leysen, O. Aerts, 
V. Siozopoulou, E. De Smet, J. Gielen, K. Guerti, M. De Maeseneer, N. Herregods, 
B. Lechkar, R. Wittoek, E. Geens, L. Claes, M. Zaqout, W. Dewals, A. Lemay, 
D. Tuerlinckx, D. Weynants, K. Vanlede, G. van Berlaer, M. Raes, H. Verhelst, 
T. Boiy, P. Van Damme, A.C. Jansen, M. Meuwissen, V. Sabato, G. Van Camp, 
A. Suls, J.V. der Werff Ten, J. Bosch, R. Dehoorne, K. Joos, P. Laukens, B. 
O. Meysman, Blood transcriptomics to facilitate diagnosis and stratification in 
pediatric rheumatic diseases - a proof of concept study, Pediatr. Rheumatol. Online 
J. 20 (2022) 91, https://doi.org/10.1186/s12969-022-00747-x. 

[36] J. Martorell-Marugán, M. Chierici, G. Jurman, M.E. Alarcón-Riquelme, 
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