Small sounding balloons are a fast and cost-effective transport system to lift up scientific payloads up to stratospheric burst altitudes below 40 kilometres; during ascent and descent phase dedicated instruments may be operated to monitor atmospheric parameters and optical payloads may be used for remote observation. This work will focus on the reconstruction of the trajectory of the ascent phase, which is the longest and dynamically less perturbed part of the flight; in this section the dynamics of the flight system is determined by the lift of the balloon guiding the vertical motion and the local winds controlling the horizontal motion. The presented reconstruction algorithm is based on a linear quadratic estimation predictor corrector using the standard equations of motions in ECEF system to propagate the simulation and the measurement of the on-board sensors (triaxial accelerometer, GPS, pressure and temperature sensors) to correct the estimation and reduce the uncertainty in the ...
Ascent trajectory of sounding balloons: dynamical models and mission data reconstruction
C. Bettanini
;M. Bartolomei;A. Aboudan;
2023
Abstract
Small sounding balloons are a fast and cost-effective transport system to lift up scientific payloads up to stratospheric burst altitudes below 40 kilometres; during ascent and descent phase dedicated instruments may be operated to monitor atmospheric parameters and optical payloads may be used for remote observation. This work will focus on the reconstruction of the trajectory of the ascent phase, which is the longest and dynamically less perturbed part of the flight; in this section the dynamics of the flight system is determined by the lift of the balloon guiding the vertical motion and the local winds controlling the horizontal motion. The presented reconstruction algorithm is based on a linear quadratic estimation predictor corrector using the standard equations of motions in ECEF system to propagate the simulation and the measurement of the on-board sensors (triaxial accelerometer, GPS, pressure and temperature sensors) to correct the estimation and reduce the uncertainty in the ...File | Dimensione | Formato | |
---|---|---|---|
60.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
833.71 kB
Formato
Adobe PDF
|
833.71 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.