Cover crops (CCs) can affect the cropping systems' N dynamics and soil water content (SWC), but optimizing their potential effects requires knowledge of their growth pattern, N accumulation, and mineralization. For this purpose, a 3-year field experiment was initiated in northeast Italy involving a maize-soybean rotation. The objectives of this study were to (i) evaluate the use of time series vegetation indices (VIs) obtained from the Sentinel-2 satellite for monitoring the growth of CCs and estimating their biomass and N uptake at termination; (ii) investigate the effects of different CCs on cash crop yield and SWC; and (iii) use the simulation model CC-NCALC to predict the nitrogen contribution of CCs to subsequent cash crops. Three CC systems were tested: a fixed treatment with triticale; a 3-year succession of rye, crimson clover, and mustard; and a control with no CCs. Satellite imagery revealed that rye and triticale grew faster during the winter season than clover but slower compared to mustard, which suffered a frost winterkilling. Both grasses and mustard produced greater biomass at termination compared to clover, but none of the CC species affected SWC or yield and N uptake of the cash crop. A net N mineralization of all the CC residues was estimated by the model (except for the N immobilization after triticale roots residues). During the subsequent cash crop season, the estimated clover and mustard N released was around 33%, and the triticale around 3% of their total N uptake, with a release peak 2 months after their termination. The use of remote sensing imagery and a prediction model of CC residue decomposition showed potential to be used as instruments for optimizing the CCs utilization and enhancing cropping water and N fertilization management efficiency; however, it must be further analyzed with other CCs species, environmental conditions, and cropping systems.
Satellite imagery and modeling contribute understanding cover crop effect on nitrogen dynamics and water availability
Raimondi G.
;Maucieri C.;Borin M.;
2023
Abstract
Cover crops (CCs) can affect the cropping systems' N dynamics and soil water content (SWC), but optimizing their potential effects requires knowledge of their growth pattern, N accumulation, and mineralization. For this purpose, a 3-year field experiment was initiated in northeast Italy involving a maize-soybean rotation. The objectives of this study were to (i) evaluate the use of time series vegetation indices (VIs) obtained from the Sentinel-2 satellite for monitoring the growth of CCs and estimating their biomass and N uptake at termination; (ii) investigate the effects of different CCs on cash crop yield and SWC; and (iii) use the simulation model CC-NCALC to predict the nitrogen contribution of CCs to subsequent cash crops. Three CC systems were tested: a fixed treatment with triticale; a 3-year succession of rye, crimson clover, and mustard; and a control with no CCs. Satellite imagery revealed that rye and triticale grew faster during the winter season than clover but slower compared to mustard, which suffered a frost winterkilling. Both grasses and mustard produced greater biomass at termination compared to clover, but none of the CC species affected SWC or yield and N uptake of the cash crop. A net N mineralization of all the CC residues was estimated by the model (except for the N immobilization after triticale roots residues). During the subsequent cash crop season, the estimated clover and mustard N released was around 33%, and the triticale around 3% of their total N uptake, with a release peak 2 months after their termination. The use of remote sensing imagery and a prediction model of CC residue decomposition showed potential to be used as instruments for optimizing the CCs utilization and enhancing cropping water and N fertilization management efficiency; however, it must be further analyzed with other CCs species, environmental conditions, and cropping systems.File | Dimensione | Formato | |
---|---|---|---|
ManuscriptFinale.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
3.39 MB
Formato
Adobe PDF
|
3.39 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.