: The environmental concerns regarding fossil plastics call for alternative biopolymers such as polyhydroxyalkanoates (PHAs) whose manufacturing costs are however still too elevated. Autotrophic microbes like Cupriavidus necator, able to convert CO2 and H2 into PHAs, offer an additional strategy. Typically, the preferred source for CO2 and H2 are expensive pure gases or syngas, which has toxic compounds for most PHAs-accumulating strains. In this work, for the first time, H2 and CO2 originating from an acidogenic reactor were converted autotrophically into poly(3-hydroxybutyrate) P(3HB). During the first stage, a mixed microbial community continuously catabolized melon waste into H2 (26.7 %) and CO2 (49.2 %) that were then used in a second bioreactor by C. necator DSM 545 to accumulate 1.7 g/L P(3HB). Additionally, the VFAs (13 gCOD/L) produced during acidogenesis were processed into 2.7 g/L of P(3HB-co-3HV). This is the first proof-of-concept of using acidogenic-derived H2 and CO2 from fruit waste to produce PHAs.

Autotrophic production of polyhydroxyalkanoates using acidogenic-derived H2 and CO2 from fruit waste

Costa P.;Basaglia M.;Casella S.;Favaro L.
;
2023

Abstract

: The environmental concerns regarding fossil plastics call for alternative biopolymers such as polyhydroxyalkanoates (PHAs) whose manufacturing costs are however still too elevated. Autotrophic microbes like Cupriavidus necator, able to convert CO2 and H2 into PHAs, offer an additional strategy. Typically, the preferred source for CO2 and H2 are expensive pure gases or syngas, which has toxic compounds for most PHAs-accumulating strains. In this work, for the first time, H2 and CO2 originating from an acidogenic reactor were converted autotrophically into poly(3-hydroxybutyrate) P(3HB). During the first stage, a mixed microbial community continuously catabolized melon waste into H2 (26.7 %) and CO2 (49.2 %) that were then used in a second bioreactor by C. necator DSM 545 to accumulate 1.7 g/L P(3HB). Additionally, the VFAs (13 gCOD/L) produced during acidogenesis were processed into 2.7 g/L of P(3HB-co-3HV). This is the first proof-of-concept of using acidogenic-derived H2 and CO2 from fruit waste to produce PHAs.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0960852423013081-main.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3498925
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact