millimeter wave (mmWave) and sub-terahertz (THz) communications have the potential of increasing mobile network throughput drastically. However, the challenging propagation conditions experienced at mmWave and beyond frequencies can potentially limit the range of the wireless link down to a few meters, compared to up to kilometers for sub-6GHz links. Thus, increasing the density of base station deployments is required to achieve sufficient coverage in the Radio Access Network (RAN). To such end, 3rd Generation Partnership Project (3GPP) introduced wireless backhauled base stations with Integrated Access and Backhaul (IAB), a key technology to achieve dense networks while preventing the need for costly fiber deployments.In this paper, we introduce SeBaSi, a system-level simulator for IAB networks, and demonstrate its functionality by simulating IAB deployments in Manhattan, New York City and Padova. Finally, we show how SeBaSi can represent a useful tool for the performance evaluation of self-backhauled cellular networks, thanks to its high level of network abstraction, coupled with its open and customizable design, which allows users to extend it to support novel technologies such as Reconfigurable Intelligent Surfaces (RISs).

Demo:[SeBaSi] system-level Integrated Access and Backhaul simulator for self-backhauling

Pagin, M;Zorzi, M
2023

Abstract

millimeter wave (mmWave) and sub-terahertz (THz) communications have the potential of increasing mobile network throughput drastically. However, the challenging propagation conditions experienced at mmWave and beyond frequencies can potentially limit the range of the wireless link down to a few meters, compared to up to kilometers for sub-6GHz links. Thus, increasing the density of base station deployments is required to achieve sufficient coverage in the Radio Access Network (RAN). To such end, 3rd Generation Partnership Project (3GPP) introduced wireless backhauled base stations with Integrated Access and Backhaul (IAB), a key technology to achieve dense networks while preventing the need for costly fiber deployments.In this paper, we introduce SeBaSi, a system-level simulator for IAB networks, and demonstrate its functionality by simulating IAB deployments in Manhattan, New York City and Padova. Finally, we show how SeBaSi can represent a useful tool for the performance evaluation of self-backhauled cellular networks, thanks to its high level of network abstraction, coupled with its open and customizable design, which allows users to extend it to support novel technologies such as Reconfigurable Intelligent Surfaces (RISs).
2023
Proceedings of the 2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)
2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)
979-8-3503-3165-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3495811
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact