This article presents an investigation on the self- sensing capability of a dual three-phase synchronous reluctance motor. Self-sensing capability refers to the ability of the motor to properly operate in a sensorless drive. The multiphase machine is decomposed into two different three-phase systems according to the multistator approach. Several supply scenarios are studied where the two three-phase windings are controlled at different operating points along a reference trajectory. The analysis is carried out both with finite element analysis simulations and experimental tests. In the first part of this article, the rotor is locked to derive the observer trajectories and find the regions in which the motor can operate without position sensor. A comparison between simulated and experimental results is given. Finally, a sensorless control strategy that allows exploiting the motor self-sensing capability under position sensor fault is developed and validated through experimental tests.
Improved Sensorless Control of Multiphase Synchronous Reluctance Machine Under Position Sensor Fault
Giuseppe Galati
;Ludovico Ortombina;Luigi Alberti;Matteo Berto
2023
Abstract
This article presents an investigation on the self- sensing capability of a dual three-phase synchronous reluctance motor. Self-sensing capability refers to the ability of the motor to properly operate in a sensorless drive. The multiphase machine is decomposed into two different three-phase systems according to the multistator approach. Several supply scenarios are studied where the two three-phase windings are controlled at different operating points along a reference trajectory. The analysis is carried out both with finite element analysis simulations and experimental tests. In the first part of this article, the rotor is locked to derive the observer trajectories and find the regions in which the motor can operate without position sensor. A comparison between simulated and experimental results is given. Finally, a sensorless control strategy that allows exploiting the motor self-sensing capability under position sensor fault is developed and validated through experimental tests.File | Dimensione | Formato | |
---|---|---|---|
10179158.pdf
accesso aperto
Tipologia:
Postprint (accepted version)
Licenza:
Creative commons
Dimensione
9 MB
Formato
Adobe PDF
|
9 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.