This article presents an investigation on the self- sensing capability of a dual three-phase synchronous reluctance motor. Self-sensing capability refers to the ability of the motor to properly operate in a sensorless drive. The multiphase machine is decomposed into two different three-phase systems according to the multistator approach. Several supply scenarios are studied where the two three-phase windings are controlled at different operating points along a reference trajectory. The analysis is carried out both with finite element analysis simulations and experimental tests. In the first part of this article, the rotor is locked to derive the observer trajectories and find the regions in which the motor can operate without position sensor. A comparison between simulated and experimental results is given. Finally, a sensorless control strategy that allows exploiting the motor self-sensing capability under position sensor fault is developed and validated through experimental tests.
Improved Sensorless Control of Multiphase Synchronous Reluctance Machine Under Position Sensor Fault
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Giuseppe Galati
;Ludovico Ortombina;Luigi Alberti;Matteo Berto
			2023
Abstract
This article presents an investigation on the self- sensing capability of a dual three-phase synchronous reluctance motor. Self-sensing capability refers to the ability of the motor to properly operate in a sensorless drive. The multiphase machine is decomposed into two different three-phase systems according to the multistator approach. Several supply scenarios are studied where the two three-phase windings are controlled at different operating points along a reference trajectory. The analysis is carried out both with finite element analysis simulations and experimental tests. In the first part of this article, the rotor is locked to derive the observer trajectories and find the regions in which the motor can operate without position sensor. A comparison between simulated and experimental results is given. Finally, a sensorless control strategy that allows exploiting the motor self-sensing capability under position sensor fault is developed and validated through experimental tests.| File | Dimensione | Formato | |
|---|---|---|---|
| 10179158.pdf accesso aperto 
											Tipologia:
											Accepted (AAM - Author's Accepted Manuscript)
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										9 MB
									 
										Formato
										Adobe PDF
									 | 9 MB | Adobe PDF | Visualizza/Apri | 
| Improved_Sensorless_Control_of_Multiphase_Synchronous_Reluctance_Machine_Under_Position_Sensor_Fault.pdf accesso aperto 
											Tipologia:
											Published (Publisher's Version of Record)
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										3.98 MB
									 
										Formato
										Adobe PDF
									 | 3.98 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




