Pupillometry has been widely implemented to investigate cognitive functioning since infancy. Like most psychophysiological and behavioral measures, it implies hierarchical levels of arbitrariness in preprocessing before statistical data analysis. By means of an illustrative example, we checked the robustness of the results of a familiarization procedure that compared the impact of audiovisual and visual stimuli in 12-month-olds. We adopted a multiverse approach to pupillometry data analysis to explore the role of (1) the preprocessing phase, that is, handling of extreme values, selection of the areas of interest, management of blinks, baseline correction, participant inclusion/exclusion and (2) the modeling structure, that is, the incorporation of smoothers, fixed and random effects structure, in guiding the parameter estimation. The multiverse of analyses shows how the preprocessing steps influenced the regression results, and when visual stimuli plausibly predicted an increase of resource allocation compared with audiovisual stimuli. Importantly, smoothing time in statistical models increased the plausibility of the results compared to those nested models that do not weigh the impact of time. Finally, we share theoretical and methodological tools to move the first steps into (rather than being afraid of) the inherent uncertainty of infant pupillometry.

First steps into the pupillometry multiverse of developmental science

Giulia Calignano
;
Paolo Girardi;Gianmarco Altoé
2024

Abstract

Pupillometry has been widely implemented to investigate cognitive functioning since infancy. Like most psychophysiological and behavioral measures, it implies hierarchical levels of arbitrariness in preprocessing before statistical data analysis. By means of an illustrative example, we checked the robustness of the results of a familiarization procedure that compared the impact of audiovisual and visual stimuli in 12-month-olds. We adopted a multiverse approach to pupillometry data analysis to explore the role of (1) the preprocessing phase, that is, handling of extreme values, selection of the areas of interest, management of blinks, baseline correction, participant inclusion/exclusion and (2) the modeling structure, that is, the incorporation of smoothers, fixed and random effects structure, in guiding the parameter estimation. The multiverse of analyses shows how the preprocessing steps influenced the regression results, and when visual stimuli plausibly predicted an increase of resource allocation compared with audiovisual stimuli. Importantly, smoothing time in statistical models increased the plausibility of the results compared to those nested models that do not weigh the impact of time. Finally, we share theoretical and methodological tools to move the first steps into (rather than being afraid of) the inherent uncertainty of infant pupillometry.
File in questo prodotto:
File Dimensione Formato  
calignano_et_al2024.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3487883
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact