Improving vehicle passenger safety is of major importance in modern automotive industry. Within this framework, vehicle stability controllers play a key role, as they actively contribute to maintain vehicle driveability even in potentially dangerous situations. An example of such a controller is Electronic Stability Control (ESC), that brakes individual wheels to generate a direct yaw moment to stabilize the vehicle (e.g. from excessive understeer or oversteer). This paper presents the real-time implementation of a stability controller based on measured (and/or estimated) yaw rate and sideslip angle and on phase-plane related stability criteria. The control strategy is first developed in MATLAB-Simulink environment with a simplified vehicle model. Then, the controller is assessed via software-in-the-loop using a full vehicle model developed in Simcenter Amesim, before implementing it on a real-time platform. Results are promising, endorsing the implementation of hardware-in-the-loop using an Electronic Control Unit.
Real-time implementation of yaw rate and sideslip control through individual wheel torques
Lenzo B.;
2022
Abstract
Improving vehicle passenger safety is of major importance in modern automotive industry. Within this framework, vehicle stability controllers play a key role, as they actively contribute to maintain vehicle driveability even in potentially dangerous situations. An example of such a controller is Electronic Stability Control (ESC), that brakes individual wheels to generate a direct yaw moment to stabilize the vehicle (e.g. from excessive understeer or oversteer). This paper presents the real-time implementation of a stability controller based on measured (and/or estimated) yaw rate and sideslip angle and on phase-plane related stability criteria. The control strategy is first developed in MATLAB-Simulink environment with a simplified vehicle model. Then, the controller is assessed via software-in-the-loop using a full vehicle model developed in Simcenter Amesim, before implementing it on a real-time platform. Results are promising, endorsing the implementation of hardware-in-the-loop using an Electronic Control Unit.File | Dimensione | Formato | |
---|---|---|---|
Tristano2022real.pdf
non disponibili
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
2.43 MB
Formato
Adobe PDF
|
2.43 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.