Let $\Omega$ be an open subset of $\mathbb{R}^n$ of finite measure. Let $f$ be a Borel measurable function from $\mathbb{R}$ to $\mathbb{R}$. We prove necessary and sufficient conditions on $f$ in order that the composite function $T_f[g]=f\circ g$ belongs to the Grand Lebesgue space $L_{p),\theta}(\Omega)$ whenever $g$ belongs to $L_{p),\theta}(\Omega)$. We also study continuity, uniform continuity, H\"older and Lipschitz continuity of the composition operator $T_f [\cdot] $ in $L_{p),\theta}(\Omega)$.

Composition Operators in Grand Lebesgue Spaces

Lanza de Cristoforis, M
Writing – Original Draft Preparation
2023

Abstract

Let $\Omega$ be an open subset of $\mathbb{R}^n$ of finite measure. Let $f$ be a Borel measurable function from $\mathbb{R}$ to $\mathbb{R}$. We prove necessary and sufficient conditions on $f$ in order that the composite function $T_f[g]=f\circ g$ belongs to the Grand Lebesgue space $L_{p),\theta}(\Omega)$ whenever $g$ belongs to $L_{p),\theta}(\Omega)$. We also study continuity, uniform continuity, H\"older and Lipschitz continuity of the composition operator $T_f [\cdot] $ in $L_{p),\theta}(\Omega)$.
File in questo prodotto:
File Dimensione Formato  
CompoGrandLebIntroduction15mar22.pfd.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso gratuito
Dimensione 252.62 kB
Formato Adobe PDF
252.62 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3474638
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact