Let $\Omega$ be an open subset of $\mathbb{R}^n$ of finite measure. Let $f$ be a Borel measurable function from $\mathbb{R}$ to $\mathbb{R}$. We prove necessary and sufficient conditions on $f$ in order that the composite function $T_f[g]=f\circ g$ belongs to the Grand Lebesgue space $L_{p),\theta}(\Omega)$ whenever $g$ belongs to $L_{p),\theta}(\Omega)$. We also study continuity, uniform continuity, H\"older and Lipschitz continuity of the composition operator $T_f [\cdot] $ in $L_{p),\theta}(\Omega)$.
Composition Operators in Grand Lebesgue Spaces
Lanza de Cristoforis, M
Writing – Original Draft Preparation
2023
Abstract
Let $\Omega$ be an open subset of $\mathbb{R}^n$ of finite measure. Let $f$ be a Borel measurable function from $\mathbb{R}$ to $\mathbb{R}$. We prove necessary and sufficient conditions on $f$ in order that the composite function $T_f[g]=f\circ g$ belongs to the Grand Lebesgue space $L_{p),\theta}(\Omega)$ whenever $g$ belongs to $L_{p),\theta}(\Omega)$. We also study continuity, uniform continuity, H\"older and Lipschitz continuity of the composition operator $T_f [\cdot] $ in $L_{p),\theta}(\Omega)$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CompoGrandLebIntroduction15mar22.pfd.pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Accesso gratuito
Dimensione
252.62 kB
Formato
Adobe PDF
|
252.62 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.