We study the complexity of cutting planes and branching schemes from a theoretical point of view. We give some rigorous underpinnings to the empirically observed phenomenon that combining cutting planes and branching into a branch-and-cut framework can be orders of magnitude more efficient than employing these tools on their own. In particular, we give general conditions under which a cutting plane strategy and a branching scheme give a provably exponential advantage in efficiency when combined into branch-and-cut. The efficiency of these algorithms is evaluated using two concrete measures: number of iterations and sparsity of constraints used in the intermediate linear/convex programs. To the best of our knowledge, our results are the first mathematically rigorous demonstration of the superiority of branch-and-cut over pure cutting planes and pure branch-and-bound.
Complexity of Branch-and-Bound and Cutting Planes in Mixed-Integer Optimization — II
Basu A.
;Conforti M.;Di Summa M.;
2022
Abstract
We study the complexity of cutting planes and branching schemes from a theoretical point of view. We give some rigorous underpinnings to the empirically observed phenomenon that combining cutting planes and branching into a branch-and-cut framework can be orders of magnitude more efficient than employing these tools on their own. In particular, we give general conditions under which a cutting plane strategy and a branching scheme give a provably exponential advantage in efficiency when combined into branch-and-cut. The efficiency of these algorithms is evaluated using two concrete measures: number of iterations and sparsity of constraints used in the intermediate linear/convex programs. To the best of our knowledge, our results are the first mathematically rigorous demonstration of the superiority of branch-and-cut over pure cutting planes and pure branch-and-bound.File | Dimensione | Formato | |
---|---|---|---|
Combinatorica_Revision.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Preprint (submitted version)
Licenza:
Accesso gratuito
Dimensione
365.3 kB
Formato
Adobe PDF
|
365.3 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.