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Abstract

We study the complexity of cutting planes and branching schemes from a theoretical point
of view. We give some rigorous underpinnings to the empirically observed phenomenon that
combining cutting planes and branching into a branch-and-cut framework can be orders of mag-
nitude more efficient than employing these tools on their own. In particular, we give general
conditions under which a cutting plane strategy and a branching scheme give a provably ex-
ponential advantage in efficiency when combined into branch-and-cut. The efficiency of these
algorithms is evaluated using two concrete measures: number of iterations and sparsity of con-
straints used in the intermediate linear/convex programs. To the best of our knowledge, our
results are the first mathematically rigorous demonstration of the superiority of branch-and-cut
over pure cutting planes and pure branch-and-bound.

1 Introduction

In this paper, we consider the following mixed-integer optimization problem:

sup ⟨c, x⟩
s.t. x ∈ C ∩ Zn × Rd (1.1)

where C is a closed, convex set in Rn+d.
State-of-the-art algorithms for integer optimization are based on two ideas that are at the origin

of mixed-integer programming and have been constantly refined: cutting planes and branch-and-
bound. Decades of theoretical and experimental research into both these techniques is at the heart
of the outstanding success of integer programming solvers. Nevertheless, we feel that there is lot
of scope for widening and deepening our understanding of these tools. We have recently started
building foundations for a rigorous, quantitative theory for analyzing the strengths and weaknesses
of cutting planes and branching [3]. We continue this project in the current manuscript.

In particular, we provide a theoretical framework to explain an empirically observed phe-
nomenon: algorithms that make a combined use of both cutting planes and branching techniques
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are more efficient (sometimes by orders of magnitude), compared to their stand alone use in algo-
rithms. We hope that our insights can contribute to a better and more precise understanding of the
interaction of cutting planes and branching: which cutting plane schemes and branching schemes
complement each other with concrete, provable gains obtained with their combined use, as opposed
to not? Not only is a theoretical understanding of this phenomenon lacking, a deeper understand-
ing of the interaction of these methods is considered to be important by both practitioners and
theoreticians in the mixed-integer optimization community. To quote an influential computational
survey [39] “... it seems that a tighter coordination of the two most fundamental ingredients of the
solvers, branching and cutting, can lead to strong improvements.”

The main computational burden in any cutting plane or branch-and-bound or branch-and-cut
algorithm is the solution of the intermediate convex relaxations. Thus, there are two important
aspects to deciding how efficient such an algorithm is: 1) How many linear programs (LPs) or convex
optimization problems are solved? 2) How computationally challenging are these convex problems?
The first aspect has been widely studied using the concepts of proof size and rank; see [6, 10–
12, 17, 21–23, 27, 50] for a small sample of previous work. Formalizing the second aspect is somewhat
tricky and we will focus on a very specific aspect: the sparsity of the constraints describing the linear
program. The collective wisdom of the optimization community says that sparsity of constraints is
a highly important aspect in the efficiency of linear programming [5, 28, 49, 53]. Additionally, most
successful mixed-integer optimization solvers use sparsity as a criterion for cutting plane selection;
see [24–26] for an innovative line of research. Compared to cutting planes, sparsity considerations
have not been as prominent in the choice of branching schemes. This is primarily because for
variable disjunctions sparsity is not an issue, and there is relatively less work on more general
branching schemes; see [1, 4, 19, 20, 36, 40–42, 44, 45]. In our analysis, we are careful about the
sparsity of the disjunctions as well – see Definition 1.3 below.

1.1 Framework for mathematical analysis.

We now present the formal details of our approach. A cutting plane for the feasible region of (1.1)
is a halfspace H = {x ∈ Rn+d : ⟨a, x⟩ ≤ δ} such that C ∩ (Zn × Rd) ⊆ H. The most useful cutting
planes are those that are not valid for C, i.e., C ̸⊆ H. There are several procedures used in practice
for generating cutting planes, all of which can be formalized by the general notion of a cutting plane
paradigm. A cutting plane paradigm is a function CP that takes as input any closed, convex set C
and outputs a (possibly infinite) family CP(C) of cutting planes valid for C ∩ (Zn×Rd). Two well-
studied examples of cutting plane paradigms are the Chvátal-Gomory cutting plane paradigm [51,
Chapter 23] and the split cut paradigm [14, Chapter 5]. We will assume that all cutting planes are
rational in this paper.

State-of-the-art solvers embed cutting planes into a systematic enumeration scheme called
branch-and-bound. The central notion is that of a disjunction, which is a union of polyhedra
D = Q1 ∪ . . . ∪Qk such that Zn × Rd ⊆ D, i.e., the polyhedra together cover all of Zn × Rd. One
typically uses a (possibly infinite) family of disjunctions for potential deployment in algorithms. A
well-known example is the family of split disjunctions that are of the form Dπ,π0 := {x ∈ Rn+d :
⟨π, x⟩ ≤ π0} ∪ {x ∈ Rn+d : ⟨π, x⟩ ≥ π0 + 1}, where π ∈ Zn × {0}d and π0 ∈ Z. When the first n
coordinates of π correspond to a standard unit vector, we get variable disjunctions, i.e., disjunctions
of the form {x : xi ≤ π0} ∪ {x : xi ≥ π0 + 1}, for i = 1, . . . , n.

A family of disjunctions D can also form the basis of a cutting plane paradigm. Given any
disjunction D, any halfspace H such that C∩D ⊆ H is a cutting plane, since C∩(Zn×Rd) ⊆ C∩D
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by definition of a disjunction. The corresponding cutting plane paradigm CP(C), called disjunctive
cuts based on D, is the family of all such cutting planes derived from disjunctions in D. Two
well-known examples are the family of split cuts, based on the family of split disjunctions defined
above, and the family of lift-and-project cuts derived from variable disjunctions.

In the following we assume that all convex optimization problems that need to be solved have
an optimal solution or are infeasible. We also assume that the convex optimization solvers always
return an integral solution if there is one.

Definition 1.1. A branch-and-cut algorithm based on a family D of disjunctions and a cutting
plane paradigm CP maintains a list L of convex subsets of the initial set C which are guaranteed
to contain the optimal point, and a lower bound LB that stores the objective value of the best
feasible solution found so far (with LB = ∞ if no feasible solution has been found). At every
iteration, the algorithm selects one of these subsets N ∈ L and solves the convex optimization
problem sup{⟨c, x⟩ : x ∈ N} to obtain xN . If the objective value is less than or equal to LB,
then this set N is discarded from the list L. Else, if xN satisfies the integrality constraints, LB is
updated with the value of xN and N is discarded from the list. Otherwise, the algorithm makes a
decision whether to branch or to cut. In the former case, a disjunction D = (Q1 ∪ . . . ∪ Qk) ∈ D
is chosen such that xN ̸∈ D and the list is updated L := L \ {N} ∪ {Q1 ∩N, . . . , Qk ∩N}. If the
decision is to cut, then the algorithm selects a cutting plane H ∈ CP(N) such that xN ̸∈ H, and
updates the relaxation N by adding the cut H, i.e., updates L := L \ {N} ∪ {N ∩H}.

Motivated by the above, we will refer to a family D of disjunctions also as a branching scheme.
In a branch-and-cut algorithm, if one always chooses to add a cutting plane and never uses a
disjunction to branch, then it is said to be a (pure) cutting plane algorithm and if one does not use
any cutting planes ever, then it is called a (pure) branch-and-bound algorithm. We note here that
in practice, when a decision to cut is made, several cutting planes are usually added as opposed to
just one single cutting plane like in Definition 1.1. In our mathematical framework, allowing only a
single cut makes for a seamless generalization from pure cutting plane algorithms, and also makes
quantitative analysis easier.

Definition 1.2. The execution of any branch-and-cut algorithm on a mixed-integer optimization
instance can be represented by a tree. Every convex relaxation N processed by the algorithm is
denoted by a node in the tree. If the optimal value for N is not better than the current lower
bound, or is integral N has an integral optimal solution, N is a leaf. Otherwise, in the case of a
branching, its children are Q1 ∩N, . . . , Qk ∩N , and in the case of a cutting plane, there is a single
child representing N ∩ H (we use the same notation as in Definition 1.1). This tree is called the
branch-and-cut tree (branch-and-bound tree, if no cutting planes are used). If no branching is done,
this tree (which is really a path) is called a cutting plane proof. The size of the tree or proof is the
total number of nodes.

Proof versus algorithm. Although we use the word “algorithm” in Definition 1.1, it is tech-
nically a non-deterministic algorithm, or equivalently, a proof schema or proof system for opti-
mality [2] (leaving aside the question of finite termination for now). This is because no indication
is given on how the important decisions are made: Which set N to process from L? Branch or
cut? Which disjunction or cutting plane to use? If these are made concrete, one would obtain a
standard deterministic algorithm (assuming, for the moment, finite termination on all instances).
Nevertheless, the proof system is very useful for obtaining information theoretic lower bounds on

3



the efficiency of any deterministic branch-and-cut algorithm. Moreover, one can prove the validity
of any upper bound on the objective, i.e., the validity of ⟨c, x⟩ ≤ γ by exhibiting a branch-and-cut
tree where this inequality is valid for all the leaves. If γ is the optimal value, this is a proof of
optimality, but one may often be interested in the branch-and-cut/branch-and-bound/cutting plane
proof complexity of other valid inequalities as well. The connections between integer programming
and proof complexity has a long history; see [4, 7, 8, 13, 16, 20, 29–31, 34, 37, 38, 46–48], to cite a
few. Our results can be interpreted in the language of proof complexity as well.

Another subtlety to keep in mind is that one could add to the power of such a branch-and-cut
proof system by relaxing the requirement that the current optimal solution xN should be eliminated
by the chosen disjunction or cutting plane. This can make a difference – an instance may have a
finite proof in the strengthened system while no finite proof exists in the original system [43]. When
required, we will use the phrase restricted proof to refer to a proof that imposes the restriction of
eliminating xN at every node N of the proof tree.

Recall that we quantify the complexity of any branch-and-bound/cutting plane/branch-and-
cut algorithm using two aspects: the number of LP relaxations processed and the sparsity of the
constraints defining the LPs. The number of LP relaxations processed is given precisely by the
number of nodes in the corresponding tree (Definition 1.2). Sparsity is formalized in the following
definitions.

Definition 1.3. Let 1 ≤ s ≤ n+ d be a natural number that we call the sparsity parameter. Then
the pair (CP, s) will denote the restriction of the paradigm CP that only reports the sub-family
of cutting planes that can be represented by inequalities with at most s non-zero coefficients of
variables; the notation (CP, s)(C) will be used to denote this sub-family for any particular convex
set C. Similarly, (D, s) will denote the sub-family of the family of disjunctions D such that each
polyhedron in the disjunction has an inequality description where every inequality has at most s
non-zero coefficients of variables.

Cutting plane proof systems with restrictions on the “depth” of the cutting planes have been
considered in the proof complexity literature; see [30, 33].

1.2 Our Results

1.2.1 Sparsity versus size.

Our first set of results considers the trade-off between the sparsity parameter s and the number of
LPs processed, i.e., the size of the tree. There are several avenues to explore in this direction. For
example, one could compare pure branch-and-bound algorithms based on (D, s1) and (D, s2), i.e.,
fix a particular disjunction family D and consider the effect of sparsity on the branch-and-bound
tree sizes. One could also look at two different families of disjunctions D1 and D2 and look at their
relative tree sizes as one turns the knob on the sparsity parameter. Similar questions could be asked
about cutting plane paradigms (CP1, s1) and (CP2, s2) for interesting paradigms CP1, CP2. Even
more interestingly, one could compare pure branch-and-bound and pure cutting plane algorithms
against each other.

We first focus on pure branch-and-bound algorithms based on the family S of split disjunctions.
A very well-known example of pure integer instances (i.e., d = 0) due to Jeroslow [35] shows that if
the sparsity of the splits used is restricted to be 1, i.e., one uses only variable disjunctions, then the
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branch-and-bound algorithm will generate an exponential (in the dimension n) sized tree. On the
other hand, if one allows fully dense splits, i.e., sparsity is n, then there is a tree with just 3 nodes
(one root, and two leaves) that solves the problem. We ask what happens in Jeroslow’s example
if one uses split disjunctions with sparsity s > 1. Our first result shows that unless the sparsity
parameter s = Ω(n), one cannot get constant size trees, and if the sparsity parameter s = O(1),
then the tree is of exponential size.

Theorem 1.4. Let H be the halfspace defined by inequality 2
∑n

i=1 xi ≤ n, where n is an odd
number. Consider the instances of (1.1) with d = 0, the objective

∑n
i=1 xi and C = H ∩ [0, 1]n.

The optimum is
⌊
n
2

⌋
, and any branch-and-bound proof with sparsity s ≤

⌊
n
2

⌋
that certifies proves

the validity of
∑n

i=1 xi ≤
⌊
n
2

⌋
has size at least Ω(2

n
2s ).

The above instance is a modification of Jeroslow’s instance; Jeroslow’s instance uses an equality
constraint instead of an inequality. However, the same argument applies for Jeroslow’s instance.

Theorem 1.5. Let H be the hyperplane defined by equality 2
∑n

i=1 xi = n, where n is an odd
number. Consider the instances of (1.1) with d = 0, the objective

∑n
i=1 xi and C = H ∩ [0, 1]n.

This problem is infeasible, and any branch-and-bound proof of infeasibility with sparsity s ≤
⌊
n
2

⌋
has size at least Ω(2

n
2s ).

The bounds in Theorem 1.4 give a constant lower bound when s = Ω(n). We establish another
lower bound which does better in this regime.

Theorem 1.6. Let H be the halfspace defined by inequality 2
∑n

i=1 xi ≤ n, where n is an odd
number. Consider the instances of (1.1) with d = 0, the objective

∑n
i=1 xi and C = H ∩ [0, 1]n.

The optimum is
⌊
n
2

⌋
, and any branch-and-bound proof with sparsity s ≤

⌊
n
2

⌋
that certifies proves

the validity of
∑n

i=1 xi ≤
⌊
n
2

⌋
has size at least Ω

(√
n(n−s)

s

)
.

Next we consider the relative strength of cutting planes and branch-and-bound. Our previous
work has studied conditions under which one method can dominate the other, depending on which
cutting plane paradigm and branching scheme one chooses [3]. For this paper, the following result
from [3] is relevant: for every convex 0/1 pure integer instance, any branch-and-bound proof based
on variable disjunctions can be “simulated” by a lift-and-project cutting plane proof without in-
creasing the size of the proof (versions of this result for linear 0/1 programming were known earlier;
see [21, 22]). Moreover, in [3] we constructed a family of stable set instances where lift-and-project
cuts gave exponentially shorter proofs than branch-and-bound. This is interesting because lift-and-
project cuts are disjunctive cuts based on the same family of variable disjunctions, so it is not a
priori clear that they have an advantage. These results were obtained with no regard for sparsity.
We now show that once we also track the sparsity parameter, this advantage can disappear.

Theorem 1.7. Let H be the halfspace defined by inequality 2
∑n

i=1 xi ≤ n, where n is an odd

number. Consider the intances of (1.1) with d = 0, the objective
∑⌈n

2 ⌉
i=1 xi and C = H ∩ [0, 1]n. The

optimum is
⌊
n
2

⌋
, and there is a branch-and-bound algorithm based on variable disjunctions, i.e.,

the family of split disjunctions with sparsity 1, that certifies proves the validity of
∑⌈n

2 ⌉
i=1 xi ≤

⌊
n
2

⌋
in O(n) steps. However, any cutting plane for C with sparsity s ≤

⌊
n
2

⌋
is trivial, i.e., valid for

[0, 1]n, no matter what cutting plane paradigm is used to derive it.
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1.2.2 Superiority of branch-and-cut.

We next consider the question of when combining branching and cutting planes is provably advan-
tageous. For this question, we leave aside the complications arising due to sparsity considerations
and focus only on the size of proofs. The following discussion and results can be extended to handle
the issue of sparsity as well, but we leave it out of this extended abstract.

Given a cutting plane paradigm CP, and a branching scheme D, are there families of instances
where branch-and-cut based on CP and D does provably better than pure cutting planes based
on CP alone and pure branch-and-bound based on D alone? If a cutting plane paradigm CP and
a branching scheme D are such that either for every instance, CP gives cutting plane proofs of
size at most a polynomial factor larger than the shortest branch-and-bound proofs with D, or vice
versa, for every instance D gives proofs of size at most polynomially larger than the shortest cutting
plane proofs based on CP, then combining them into branch-and-cut is likely to give no substantial
improvement since one method can always do the job of the other, up to polynomial factors. As
mentioned above, prior work [3] had shown that disjunctive cuts based on variable disjunctions
(with no restriction on sparsity) dominate branch-and-bound based on variable disjunctions for
pure 0/1 instances, and as a consequence branch-and-cut based on these paradigms is dominated
by pure cutting planes. In the next theorem, we show that the situation completely reverses if one
considers a broader family of disjunctions (still restricted to the pure integer case).

Theorem 1.8. Let C ⊆ Rn be a closed, convex set. Let k ∈ N be a fixed natural number and let D
be any family of disjunctions that contains all split disjunctions, such that all disjunctions in D have
at most k terms in the disjunction. If a valid inequality ⟨c, x⟩ ≤ δ for C ∩ Zn has a cutting plane
proof of size L using disjunctive cuts based on D, then there exists a branch-and-bound proof of
size at most (k+1)L based on D. Moreover, there is a family of instances where branch-and-bound
based on split disjunctions solves the problem in O(1) time whereas there is a polynomial lower
bound on split cut proofs.

A consequence of Theorem 1.8 is that any cutting plane proof based on Chvátal-Gomory cuts
can be replaced by a branch-and-bound proof based on split disjunctions with a constant blow up
in size (since Chvátal-Gomory cuts are a subset of split cuts). This special case was also proved in
earlier work by Beame et al. [4, Theorem 12]. We also emphasize that the proof of Theorem 1.8
crucially uses the fact that we have a class of disjunctions that is rich enough to include all split
disjunctions.

With similar analysis as Theorem 1.8, we can get the following theorem that takes sparsity into
account as well.

Theorem 1.9. Let C ∈ Rn be a closed, convex set. Let ⟨c, x⟩ ≤ δ be a valid inequality for
C ∩Zn. If there exists a cutting plane proof of size L and sparsity s certifying proving the validity
of this inequality, which is derived using general split disjunctions of sparsity s, then there exists a
branch-and-bound proof of sparsity s which proves the validity and takes at most O(L) iterations.

The above discussion and theorem motivate the following definition which formalizes the sit-
uation where no method dominates the other. To make things precise, we assume that there is
a well-defined way to assign a concrete size to any instance of (1.1); see [32] for a discussion on
how to make this formal. Additionally, when we speak of an instance, we allow the possibility of
proving the validity of any inequality valid for C ∩ (Zn × Rd), not necessarily related to an upper
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bound on the objective value. Thus, an instance is a tuple (C, c, γ) such that ⟨c, x⟩ ≤ γ for all
x ∈ C ∩ (Zn × Rd).

Definition 1.10. A cutting plane paradigm CP and a branching scheme D are complementary if
there is a family of instances where CP gives polynomial (in the size of the instances) size proofs and
the shortest branch-and-bound proof based on D is exponential (in the size of the instances), and
there is another family of instances where D gives polynomial size proofs while CP gives exponential
size proofs.

We wish to formalize the intuition that branch-and-cut is expected to be exponentially better
than branch-and-bound or cutting planes alone for complementary pairs of branching schemes and
cutting plane paradigms. But we need to make some mild assumptions about the branching schemes
and cutting plane paradigms. All known branching schemes and cutting plane methods from the
literature, as far as we know, satisfy these conditions.

Definition 1.11. A branching scheme is said to be regular if no disjunction involves a continuous
variable, i.e., each polyhedron in the disjunction is described using inequalities that involve only
the integer constrained variables.

A branching scheme D is said to be embedding closed if disjunctions from higher dimensions
can be applied to lower dimensions. More formally, let n1, n2, d1, d2 ∈ N. If D ∈ D is a
disjunction in Rn1 × Rd1 × Rn2 × Rd2 with respect to Zn1 × Rd1 × Zn2 × Rd2 , then the disjunction
D ∩ (Rn1 × Rd1 × {0}n2 × {0}d2), interpreted as a set in Rn1 × Rd1 , is also in D for the space
Rn1 × Rd1 with respect to Zn1 × Rd1 (note that D ∩ (Rn1 × Rd1 × {0}n2 × {0}d2), interpreted as a
set in Rn1 ×Rd1 , is certainly a disjunction with respect to Zn1 ×Rd1 ; we want D to be closed with
respect to such restrictions).

A cutting plane paradigm CP is said to be regular if it has the following property, which says
that adding “dummy variables” to the formulation of the instance should not change the power
of the paradigm. Formally, let C ⊆ Rn × Rd be any closed, convex set and let C ′ = {(x, t) ∈
Rn ×Rd ×R : x ∈ C, t = ⟨f, x⟩} for some f ∈ Rn. Then if a cutting plane ⟨a, x⟩ ≤ b is derived by
CP applied to C, i.e., this inequality is in CP(C), then it should also be in CP(C ′), and conversely,
if ⟨a, x⟩+ µt ≤ b is in CP(C ′), then the equivalent inequality ⟨a+ µf, x⟩ ≤ b should be in CP(C).

A cutting plane paradigm CP is said to be embedding closed if cutting planes from higher
dimensions can be applied to lower dimensions. More formally, let n1, n2, d1, d2 ∈ N. Let C ⊆
Rn1 × Rd1 be any closed, convex set. If the inequality ⟨c1, x1⟩+ ⟨a1, y1⟩+ ⟨c2, x2⟩+ ⟨a2, y2⟩ ≤ γ is
a cutting plane for C × {0}n2 × {0}d2 with respect to Zn1 × Rd1 × Zn2 × Rd2 that can be derived
by applying CP to C ×{0}n2 ×{0}d2 , then the cutting plane ⟨c1, x1⟩+ ⟨a1, y1⟩ ≤ γ that is valid for
C ∩ (Zn1 × Rd1) should also belong to CP(C).

A cutting plane paradigm CP is said to be inclusion closed, if for any two closed convex sets
C ⊆ C ′, we have CP(C ′) ⊆ CP(C). In other words, any cutting plane derived for C ′ can also be
derived for a subset C.

Theorem 1.12. Let D be a regular, embedding closed branching scheme and let CP be a regular,
embedding closed, and inclusion closed cutting plane paradigm such that D includes all variable
disjunctions and CP and D form a complementary pair. Then there exists a family of instances
of (1.1) which have polynomial size branch-and-cut proofs, whereas any branch-and-bound proof
based on D and any cutting plane proof based on CP is of exponential size.
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Example 1.13. As a concrete example of a complementary pair that satisfies the other conditions
of Theorem 1.12, consider CP to be the Chvátal-Gomory paradigm and D to be the family of
variable disjunctions. From their definitions, they are both regular and D is embedding closed.
The Chvátal-Gomory paradigm is also embedding closed and inclusion closed. For the Jeroslow
instances from Theorem 1.4, the single Chvátal-Gomory cut

∑n
i=1 xi ≤ ⌊n2 ⌋ proves optimality,

whereas variable disjunctions produce a tree of size 2⌊
n
2
⌋. On the other hand, consider the set T ,

where T = conv{(0, 0), (1, 0), (12 , h)} and the valid inequality x2 ≤ 0 for T ∩ Z2. Any Chvátal-
Gomory paradigm based proof has size exponential in the size of the input, i.e., every proof has
length at least Ω(h) [51]. On the other hand, a single disjunction on the variable x1 solves the
problem.

In [3], we also studied examples of disjunction families D such that disjunctive cuts based on D
are complementary to branching schemes based on D.

Example 1.13 shows that the classical Chvátal-Gomory cuts and variable branching are comple-
mentary and thus give rise to a superior branch-and-cut routine when combined by Theorem 1.12.
As discussed above, for 0/1 problems, lift-and-project cuts and variable branching do not form a
complementary pair, and neither do split cuts and split disjunctions by Theorem 1.8. It would be
nice to establish the converse of Theorem 1.12: if there is a family where branch-and-cut is expo-
nentially superior, then the cutting plane paradigm and branching scheme are complementary. In
Theorem 1.14 below, we prove a partial converse along these lines in the pure integer setting. This
partial converse requires the disjunction family to include all split disjunctions. It would be more
satisfactory to establish similar results without this assumption. More generally, it remains an open
question if our definition of complementarity is an exact characterization of when branch-and-cut
is superior.

Theorem 1.14. Let D be a branching scheme that includes all split disjunctions and let CP be
any cutting plane paradigm. Suppose that for every pure integer instance and any cutting plane
proof based on CP for this instance, there is a branch-and-bound proof based on D of size at most
a polynomial factor (in the size of the instance) larger. Then for any branch-and-cut proof based
on D and CP for a pure integer instance, there exists a pure branch-and-bound proof based on D
that has size at most polynomially larger than the branch-and-cut proof.

The high level message that we extract from our results is the formalization of the following
simple intuition. For branch-and-cut to be superior to pure cutting planes or pure branch-and-
bound, one needs the cutting planes and branching scheme to do “sufficiently different” things. For
example, if they are both based on the same family of disjunctions (such as lift-and-project cuts
and variable branching, or the setting of Theorem 1.8), then we do not get any improvements with
branch-and-cut. The definition of a complementary pair attempts to make the notion of “sufficiently
different” formal and Theorem 1.12 derives the concrete superior performance of branch-and-cut
from this formalization.

2 Proofs

2.1 Proof of Theorem 1.4

We first give necessary definitions and prove a lemma.
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Definition 2.1. Consider the instances in Theorem 1.4, and the branch-and-bound tree T produced
by split disjunctions to solve it. Assume node N of T contains at least one integer point in {0, 1}n.
Since T is a tree, there is a unique path from the root of T to N . Each edge of this path is generated
when a split disjunction is applied during the procedure of producing T . Let D1, D2, . . . , Dr be
the corresponding split disjunctions. used to derive N from the root of T . For 1 ≤ j ≤ r, Dj is a
true split disjunction of N if both of the two halfspaces of Dj have a nonempty intersection with
the integer hull of the corresponding parent node, i.e. the parent node’s integer hull is split into
two nonempty parts by Dj . Otherwise, it is called a false split disjunction of N . We define the
generation variable set of N as the index set I ⊆ {1, 2, . . . , n} such that it consists of all the indices
of the variables involved in the true split disjunctions of N . The generation set of the root node is
empty.

Lemma 2.2. Consider the instances in Theorem 1.4, and a branch-and-bound tree T produced by
split disjunctions with sparsity parameter s <

⌊
n
2

⌋
to solve it. For any node N of T with at least

one feasible integer point v = (v1, v2, . . . , vn) ∈ {0, 1}n, let P , PI and I denote the relaxation, the
integer hull and the generation variable set corresponding to N . Define V := {(x1, x2, . . . , xn) ∈
{0, 1}n : xi = vi for i ∈ I,

∑n
j=1 xi =

⌊
n
2

⌋
}.

If |I| ≤
⌊
n
2

⌋
− s, then we have:

(i) V ̸= ∅ and V ⊆ PI ∩ {0, 1}n;

(ii) the objective LP value of N is n
2 .

Proof. We first give a proof of (i). Since v is a feasible integer point, 0 ≤
∑

i∈I vi ≤
∑n

i=1 vi ≤
⌊
n
2

⌋
.

Thus, there exists v′ = (v′1, v
′
2, . . . , v

′
n), where v′i = vi for i ∈ I and

∑n
i=1 v

′
i =

⌊
n
2

⌋
, due to the

assumption that |I| ≤
⌊
n
2

⌋
− s. So v′ ∈ V ̸= ∅.

For each v∗ ∈ V , we wish to show that v∗ ∈ P . This will show that v∗ ∈ PI and V ⊆ PI .
Consider any inequality describing P ; if it is not the original defining inequality

∑n
i=1 xi ≤

n
2 or a

0/1 bound on a variable, then this inequality was introduced on the path from the root to N . A
false split disjunction D′ cannot remove v∗, i.e. v∗ ∈ D′, since v∗ is integral. Consider an inequality
coming from a true split disjunction. Let

∑
i∈S aixi ≤ δ∗ for some S ⊆ I be such an inequality.

Since v ∈ PI and v∗i = vi for i ∈ I, we observe that
∑

i∈S aivi =
∑

i∈S aiv
∗
i ≤ δ∗.

We will prove (ii) by contradiction, so we assume the objective LP value of N is strictly less
than n

2 . Let P0 denote the relaxation corresponding to the root node. Consider ℓ ∈ {1, 2, . . . , n}\I.
Since |I| ≤

⌊
n
2

⌋
− s, there exists v1 = (v11, v

1
2, . . . , v

1
n) ∈ V , where v1ℓ = 0. Define v2 =

(v21, v
2
2, . . . , v

2
n), where v2ℓ = 1

2 , and v2i = v1i for i ∈ {1, 2, . . . , n}\{ℓ}. It is clear that v2 ∈ P0,
and v2 /∈ P since the LP value is assumed to be strictly less than n

2 . Since ℓ /∈ I, there must be

a halfspace Ĥ coming from a false split disjunction of N that excludes v2 and valid to N . The
inequality describing this halfspace Ĥ must involve variable xℓ, otherwise v

1 also violates Ĥ, which
leads to a contradiction since Ĥ comes from a false split disjunction v1 ∈ V ⊆ PI ⊆ N and therefore
cannot cut off v1 v1 ∈ Ĥ. Hence assume the inequality describing Ĥ is aℓxℓ +

∑
i∈S aixi ≤ δ for

some S ⊆ {1, 2, . . . , n}\{ℓ}, and |S| ≤ s − 1 (since the sparsity of the disjunctions is restricted
to be at most s). Since

∑
i∈I v

1
i ≤

⌊
n
2

⌋
− s, we have

∑
i/∈I∪{ℓ} v

1
i ≥ s, and there exists r ∈

{1, 2, . . . , n}\(S ∪ I ∪ {ℓ}) such that v1r = 1. Let v3 = (v31, v
3
2, . . . , v

3
n), where v3ℓ = 1, v3r = 0, and

v3i = v1i for i ̸= ℓ, r. By definition of V , v3 ∈ V . Since v1, v3 are integral, and Ĥ comes from a false

9



split disjunction, Ĥ must be valid for v1 and v3. Thus, we have

aℓ · 0 +
∑
i∈S

aiv
1
i = aℓ · 0 +

∑
i∈S

aiv
2
i ≤ δ, (2.1)

aℓ · 1 +
∑
i∈S

aiv
3
i = aℓ · 1 +

∑
i∈S

aiv
1
i = aℓ · 1 +

∑
i∈S

aiv
2
i ≤ δ. (2.2)

Summing up (2.1) and (2.2) and dividing by 2, we get

aℓ ·
1

2
+
∑
i∈S

aiv
2
i = aℓ · v2ℓ +

∑
i∈S

aiv
2
i ≤ δ, (2.3)

which implies that Ĥ is valid for v2. This is a contradiction.

Proof of Theorem 1.4. For a node N of the branch-and-bound tree containing at least one integer
point, if it is derived by exactly m true split disjunctions, then we say it is a node of generation m.
By Lemma 2.2, if m ≤ 1

s

⌊
n
2

⌋
− 1, then a node N of generation m has LP objective value n

2 , and in
the subtree rooted at N there must exist at least two descendants from generation m+1, since the
leaf nodes must have LP values less than or equal to ⌊n2 ⌋. Therefore, there are at least 2m nodes
of generation m when m ≤ 1

s

⌊
n
2

⌋
− 1. This finishes the proof.

2.2 Proof of Theorem 1.6

Lemma 2.3. Let w1, . . . , wk ∈ Z \ {0} and W ∈ Z. Then the number of 0/1 solutions to∑k
j=1wjxj = W is at most

(
k

⌊k/2⌋
)
.

Proof. Let P := {i ∈ {1, . . . , k} : wi > 0} and N := {i ∈ {1, . . . , k} : wi < 0}. By making the
variable change xi = 1−yi for i ∈ N and xi = yi for i ∈ P , it is seen that the number of 0/1 solutions
to
∑k

i=1wixi = W is the same as the number of 0/1 solutions to
∑

i∈P wiyi +
∑

i∈N (−wi)yi =
W −

∑
i∈N wi. Writing this a bit more cleanly, we want to upper bound the number of 0/1

solutions to
∑k

i=1w
′
iyi = W ′, where w′

i > 0 for all i ∈ {1, . . . , k} and W ′ ∈ Z. The collection of

subsets I ⊆ {1, . . . , k} that are solutions to
∑k

i=1w
′
iyi = W ′ is an antichain in the lattice of subsets

with set inclusion as the partial order because all the w′
i values are strictly positive. By Sperner’s

Theorem [52], the size of this collection is at most
(

k
⌊k/2⌋

)
.

Proof of Theorem 1.6. We consider the instance from Theorem 1.6. For any split disjunction D :=
{x : ⟨a, x⟩ ≤ b}∪{x : ⟨a, x⟩ ≥ b+1}, we define V (D) to be the set of all the optimal LP vertices (of
the original polytope) that lie strictly in the corresponding split set {x : b ≤ ⟨a, x⟩ ≤ b+1} (Should
this set be open?). Let the support of a be given by T ⊆ {1, . . . , n} with t := |T | ≤ s ≤ ⌊n/2⌋. Since
a ∈ Zn, b ∈ Z, and all the optimal LP vertices’ coordinates can only be 0, 12 or 1, V (D) is precisely
the subset of the optimal LP vertices x̂ such that ⟨a, x̂⟩ = b+ 1

2 . Fix some ℓ ∈ T and consider those
optimal LP vertices x̂ ∈ V (D) where x̂ℓ =

1
2 . This means that

∑
j∈T\{ℓ} aj x̂j = b+ 1

2 − aℓ
2 . Let ri

be the number of 0/1 solutions to
∑

j∈T\{ℓ} aj x̂j = b+ 1
2 − aℓ

2 with exactly i coordinates set to 1.

Then the number of vertices from V (D) with the ℓ-th coordinate equal to 1
2 is

t−1∑
i=0

ri

(
n− t

⌊n/2⌋ − i

)
≤

(
t−1∑
i=0

ri

)(
n− t

⌊n/2⌋ − ⌊t/2⌋

)
.
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since
(

n−t
⌊n/2⌋−i

)
≤
(

n−t
⌊n/2⌋−⌊t/2⌋

)
for all i ∈ {0, . . . , t − 1}. Using Lemma 2.3,

∑t−1
i=0 ri ≤

(
t−1
⌊t/2⌋

)
and

we obtain the upper bound
(
t−1
⌊t/2⌋

)(
n−t

⌊n/2⌋−⌊t/2⌋
)
on the number of vertices from V (D) with the ℓ-th

coordinate equal to 1
2 . Therefore, |V (D)| ≤ t

(
t−1
⌊t/2⌋

)(
n−t

⌊n/2⌋−⌊t/2⌋
)
=: p(t). Since n is odd, we have

p(t) =


t!(n− t)!

(t/2)!(t/2− 1)!((n− t− 1)/2)!((n− t+ 1)/2)!
if t is even,

t!(n− t)!

((t− 1)/2)!((t− 1)/2)!((n− t)/2)!((n− t)/2)!
if t is odd.

A direct calculation then shows that

p(t+ 1)

p(t)
=


(t+ 1)(n− t+ 1)

t(n− t)
if t is even,

1 if t is odd.

Let h be the largest even number not exceeding s. Since p(1) =
(
n−1
⌊n/2⌋

)
, we obtain, for every

t ∈ {1, . . . , s},

p(t) ≤ p(s) =

(
n− 1

⌊n/2⌋

) ∏
1≤q≤s
q even

q + 1

q
· n− q + 1

n− q
=

(
n− 1

⌊n/2⌋

)
· (h+ 1)!!

h!!
· (n− 1)!!

(n− 2)!!
· (n− h− 2)!!

(n− h− 1)!!
,

where m!! denotes the product of all integers from 1 up to m of the same parity as m. Using the
fact that, for every even positive integer ℓ,√

πℓ

2
<

ℓ!!

(ℓ− 1)!!
<

√
π(ℓ+ 1)

2

(see, e.g., [9, 54]), we have (for h ≥ 1, i.e., s ≥ 2)

p(t) ≤
(
n− 1

⌊n/2⌋

)
· (h+ 1)(h− 1)!!

h!!
· (n− 1)!!

(n− 2)!!
· (n− h− 2)!!

(n− h− 1)!!

≤
(
n− 1

⌊n/2⌋

)
(h+ 1)

√
2

πh
· πn
2

· 2

π(n− h− 1)

=

(
n− 1

⌊n/2⌋

)√
2n(h+ 1)2

πh(n− h− 1)

=

(
n− 1

⌊n/2⌋

)
O

(√
ns

n− s

)
.

Thus, this is an upper bound on |V (D)|. Since the total number of optimal LP vertices of the
instance is n

(
n−1
⌊n/2⌋

)
, we obtain the following lower bound of on the size of a branch-and-bound

proof:
n( n−1

⌊n/2⌋)
|V (D)| = Ω

(√
n(n−s)

s

)
.
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2.3 Proof of Theorem 1.7

Proof of Theorem 1.7. We first show a branch-and-bound algorithm with size O(n). Let the root
node be N0. The objective LP value of N0 is n

2 . Let N0
1 and N1

1 be the children of N0 produced
by branches x1 ≤ 0 and x1 ≥ 1 respectively. Then the LP values of N0

1 and N1
1 are

⌊
n
2

⌋
and

n
2 . Therefore N0

1 is a leaf node. Recursively, let N0
j+1 and N1

j+1 be children of N1
j produced by

xj+1 ≤ 0 and xj+1 ≥ 1 for 1 ≤ j ≤
⌊
n
2

⌋
. Note that this is well defined since the LP values of N0

j

and N1
j are

⌊
n
2

⌋
and n

2 for 1 ≤ j ≤
⌊
n
2

⌋
. It is clear that node N0

j+1 is a leaf for 1 ≤ j ≤
⌊
n
2

⌋
.

Node N1
⌈n

2 ⌉
is an infeasible leaf since there are

⌈
n
2

⌉
variables set to be 1. Therefore, the whole

branch-and-bound tree has n+ 2 nodes.
Next, we show that any cutting plane for the problem with sparsity s ≤

⌊
n
2

⌋
is valid for [0, 1]n.

We will use the fact that H ∩ {0, 1}n = {(x1, x2, . . . , xn) ∈ {0, 1}n :
∑n

i=1 xi ≤
⌊
n
2

⌋
}.

Let S ⊆ {1, . . . , n} be the set of indices for the non-zero coefficients in an inequality defining
the cutting plane, i.e., the inequality is given by

∑
i∈S aixi ≤ δ. Since this is a cutting plane it

must be valid for all points in H ∩ {0, 1}n. Let VS = {(x1, x2, . . . , xn) ∈ {0, 1}n : xi = 0, i ̸∈ S}.
Since |S| ≤ s ≤

⌊
n
2

⌋
, we have VS ⊆ H ∩ {0, 1}n. Therefore

∑
i∈S aixi ≤ δ is valid for all of VS .

Since the inequality only involves xi, i ∈ S, it must also be a valid inequality for all of {0, 1}n, and
hence it is valid for its integer hull [0, 1]n.

2.4 Proof of Theorem 1.8

Proof of Theorem 1.8. Let the cutting plane proof be H1, H2, . . . ,HL, and the sequence of the
corresponding disjunctions deriving it be D1, D2, . . . , DL ∈ D. Moreover, assume Hi is ⟨αi, x⟩ ≤ δi
for 1 ≤ i ≤ L. Since we assume all cutting planes are rational, we may assume αi ∈ Zn+d and
δi ∈ Z. Let H ′

i be ⟨αi, x⟩ ≥ δi+1. Since Hi is valid for C∩Di, we must have that (C∩H ′
i)∩Di = ∅.

Let N0 = C be the root node of the branch-and-bound tree. Recursively, we define Ni and N ′
i

be the children of Ni−1 generated by applying the split disjunction Hi∪H ′
i for 1 ≤ i ≤ L. Applying

the disjunction Di on N ′
i only generates infeasible nodes as noted above. Meanwhile, Ni shows

the validity of Hi. Thus, we have replaced the cut Hi with k + 1 nodes of the branch-and-bound
tree: k of these are infeasible and one is feasible. Therefore, we get a branch-and-bound tree of size
(k + 1)L.

A well-known family of instances in R3, given by conv{(0, 0, 0), (2, 0, 0), (0, 2, 0), (12 ,
1
2 , h)} for h ∈

N, from [18] can be solved by branch-and-bound in O(1) iterations with just variable disjunctions;
however, there is a poly(log(h)) lower bound on the split rank [15], and therefore, on the length of
proofs based on split cuts.

2.5 Proofs of Theorems 1.12 and 1.14

We will need some preliminary facts for comparing growth rate of instance sizes.

Definition 2.4. A sequence of real numbers (an)n∈N is said to (asymptotically) polynomially dom-
inate another sequence (bn)n∈N if there exists a polynomial p, and two natural numbers n1, n2 ∈ N
such that

lim
n→∞

bn1+n

p(an2+n)
< ∞.

If (an)n∈N polynomially dominates (bn)n∈N and vice versa, we say that the two sequences are
(asymptotically) polynomially equivalent.
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Note that if bn = O(p(an)) for some polynomial p, then (an)n∈N polynomially dominates (bn)n∈N
(for example, an = n is polynomially equivalent to the sequence bn = n3). However, our definition
allows us to neglect a finite number of terms from both sequences cover more general cases. To
illustrate the difference, consider the following two sequences. Define a1 = 2, and recursively an+1 =
2an for n ≥ 2. Define bn = an+1 for n ≥ 1. There is no polynomial p such that bn = O(p(an)).
Nevertheless, the sequence (bn)n∈N is simply a “shift” of the sequence (an)n∈N and we would like
to say that both have the same growth rate. Our definition captures this situation.

The following two lemmas are direct consequences of Definition 2.4.

Lemma 2.5. Let (an)n∈N and (bn)n∈N be two sequences such that an ≥ bn for all n ∈ N. Then
(an)n∈N polynomially dominates (bn)n∈N.

Lemma 2.6. Let (an)n∈N and (bn)n∈N be two sequences such that an ≤ bn ≤ an+1 for all n ∈ N.
Then (an)n∈N and (bn)n∈N are polynomially equivalent.

Proposition 2.7. Let (an)n∈N and (bn)n∈N be two sequences such that limn→∞ an = ∞ =
limn→∞ bn. Then there exist subsequences (a′n)n∈N and (b′n)n∈N of (an)n∈N and (bn)n∈N respec-
tively such that (a′n)n∈N and (b′n)n∈N are polynomially equivalent.

Proof. Since limn→∞ an = ∞ = limn→∞ bn, there exist subsequences (a′n)n∈N and (b′n)n∈N of
(an)n∈N and (bn)n∈N respectively such that an ≤ bn ≤ an+1 for all n ∈ N. Indeed, one can
build this sequence inductively: Start with a′1 = a1, define b′1 to be the smallest number in the
sequence (bn)n∈N larger than or equal to a′1. Suppose we have built up the subsequence upto some
i ∈ N: a′1, . . . , a′i and b′1, . . . , b

′
i such that a′k ≤ b′k ≤ a′k+1 for all k ≤ i− 1 and a′i ≤ b′i. Define a′i+1

to be the smallest number in the sequence (an)n∈N larger than or equal to b′i, and define b′i+1 to be
the smallest number in the sequence (bn)n∈N larger than or equal to a′i+1. By Lemma 2.6, these
two subsequences are polynomially equivalent.

We next derive some straightforward consequences of Definition 1.11.

Lemma 2.8. Let C ⊆ C ′ be two closed, convex sets. Let D be any branching scheme and let CP
be an inclusion closed cutting plane paradigm. If there is a branch-and-bound proof with respect
to C ′ based on D for the validity of an inequality ⟨c, x⟩ ≤ γ, then there is a branch-and-bound
proof with respect to C based on D for the validity of ⟨c, x⟩ ≤ γ of the same size. The same holds
for cutting plane proofs based on CP.

Proof. For the branch-and-bound proofs, apply the same set of disjunctions on C instead of C ′.
Since C ⊆ C ′, all the nodes in the branch-and-bound tree for C are subsets of the corresponding
nodes in the branch-and-bound tree for C ′. Thus, ⟨c, x⟩ ≤ d is valid for the leaves of the new
branch-and-bound tree.

For the cutting plane proofs, apply the same sequence of cuts and the result follows from the
inclusion closed property of CP (Definition 1.11).

Lemma 2.9. Let D and CP be both embedding closed and let C ⊆ Rn1 ×Rd1 be a closed, convex
set. Let ⟨c, x⟩ ≤ γ be a valid inequality for C ∩ (Zn1 × Rd1). If there is a branch-and-bound proof
with respect to C × {0}n2 × {0}d2 based on D for the validity of ⟨c, x⟩ ≤ γ interpreted as a valid
inequality in Rn1 ×Rd1 ×Rn2 ×Rd2 for (C×{0}n2 ×{0}d2)∩ (Zn1 ×Rd1 ×Zn2 ×Rd2), then there is
a branch-and-bound proof with respect to C based on D for the validity of ⟨c, x⟩ ≤ γ of the same
size. The same holds for cutting plane proofs based on CP.
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Proof. Since D is embedding closed, for any disjunction D used in the space Rn1 ×Rn2 ×Rd1 ×Rd2 ,
we use the restriction of D to the space Rn1 × Rd1 (Definition 1.11).

Similarly, the cutting plane claim from the fact that CP is embedding closed (Definition 1.11).

Lemma 2.10. Let C ⊆ Rn+d be a polytope and let ⟨c, x⟩ ≤ γ be a valid inequality for C∩(Zn×Rd).
Let X := {(x, t) ∈ Rn+d × R : x ∈ C, t = ⟨c, x⟩}. Then, for any regular branching scheme D or a
regular cutting plane paradigm CP, any proof of validity of ⟨c, x⟩ ≤ γ with respect to C∩ (Zn×Rd)
can be changed into a proof of validity of t ≤ γ with respect to X ∩ (Zn ×Rd ×R) with no change
in length, and vice versa.

Proof. A proof of ⟨c, x⟩ ≤ γ with respect to C ∩ (Zn × Rd) never involves t, and so can be carried
over verbatim a proof for t = ⟨c, x⟩ ≤ γ with respect to X ∩ (Zn ×Rd ×R). In the other direction,
since we assume D is regular (Definition 1.11), no disjunction uses the variable t and so it can be
applied with the same effect on C. Similarly, since CP is regular, by definition any cutting plane
derived for X can be converted into an equivalent cutting plane for C.

Proof of Theorem 1.12. Let {Pk ⊆ Rnk × Rdk : k ∈ N} be a family of closed, convex sets, and
{(ck, γk) ∈ Rnk × Rdk × R : k ∈ N} be a family of tuples such that ⟨ck, x⟩ ≤ γk is valid for
Pk ∩ (Znk × Rdk), and CP has polynomial size proofs for this family of instances, whereas D has
exponential size proofs. Similarly, let {P ′

k ⊆ Rn′
k × Rd′k : k ∈ N} be a family of closed, convex

sets, and {(c′k, γ′k) ∈ Rn′
k × Rd′k × R : k ∈ N} be a family of tuples such that ⟨c′k, x⟩ ≤ γ′k is valid

for P ′
k ∩ (Zn′

k × Rd′k), and D has polynomial size proofs for this family of instances, whereas CP
has exponential size proofs. By Proposition 2.7, we may assume that the sequence of sizes of the
instances (Pk, ck, γk) and (P ′

k, c
′
k, γ

′
k) in the two families are polynomially equivalent, by passing to

an infinite subfamily if necessary. Since the polynomial or exponential behaviour of the proof sizes
are defined with respect to the sizes of the instances, passing to infinite subfamilies maintains this
behaviour.

We first embed Pk and P ′
k into a common ambient space for each k ∈ N. This is done by defining

n̄k = max{nk, n
′
k}, d̄k = max{dk, d′k}, and embedding both Pk and P ′

k into the space Rn̄k ×Rd̄k by

defining Qk := Pk × {0}n̄k−nk × {0}d̄k−dk and Q′
k := P ′

k × {0}n̄k−n′
k × {0}d̄k−d′k . By Lemma 2.9, D

has an exponential lower bound on sizes of proofs for the inequality ⟨ck, x⟩ ≤ γk, interpreted as an
inequality in Rn̄k × Rd̄k , valid for Qk ∩ (Zn̄k × Rd̄k). By Lemma 2.9, CP has an exponential lower
bound on sizes of proofs for the inequality ⟨c′k, x⟩ ≤ γ′k, interpreted as an inequality in Rn̄k × Rd̄k ,

valid for Q′
k ∩ (Zn̄k × Rd̄k).

We now make the objective vector common for both families of instances. Define Xk := {(x, t) ∈
Rn̄k × Rd̄k × R : x ∈ Qk, t = ⟨ck, x⟩} and X ′

k := {(x, t) ∈ Rn̄k × Rd̄k × R : x ∈ Q′
k, t = ⟨c′k, x⟩}.

By Lemma 2.10, the inequality t ≤ γk has an exponential lower bound on sizes of proofs based on
D for Xk and the inequality t ≤ γ′k has an exponential lower bound on sizes of proofs based on CP
for X ′

k.

We next embed these families as faces of the same closed convex set. Define Zk ⊆ Rn̄k ×Rd̄k ×
R× R, for every k ∈ N, as the convex hull of Xk × {0} and X ′

k × {0}.
The key point to note is that these constructions combine two families whose sizes are poly-

nomially equivalent and therefore the new family that is created has sizes that are polynomially
equivalent to the original two families.
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We let (x, t, y) denote points in the new space Rn̄k × Rd̄k × R × R, i.e., y denotes the last
coordinate. Consider the family of inequalities t − γk(1 − y) − γ′ky ≤ 0 for every k ∈ N. Note
that this inequality reduces to t ≤ γk when y = 0 and it reduces to t ≤ γ′k when y = 1. Thus,

the inequality is valid for Zk ∩ (Zn̄k × Rd̄k × R × Z), i.e., when we constrain y to be an integer
variable. Since Xk × {0} ⊆ Zk, by Lemma 2.8, proofs of t− γk(1− y)− γ′ky ≤ 0 based on D have
an exponential lower bound on their size. Similarly, since X ′

k ×{0} ⊆ Zk, by Lemma 2.8, proofs of
t− γk(1− y)− γ′ky ≤ 0 based on CP have an exponential lower bound on their size.

However, for branch-and-cut based on CP and D, we can first branch on the variable y (recall
from the hypothesis that D allows branching on any integer variable). Since CP has a polynomial
proof for Pk and (ck, γk) and therefore for the valid inequality t ≤ γk for Xk × {0}, we can process
the y = 0 branch with polynomial size cutting plane proofs. Similarly, D has a polynomial proof
for P ′

k and (c′k, γ
′
k) and therefore for the valid inequality t ≤ γ′k for X ′

k × {0}, we can process the
y = 1 branch also in with polynomial size proofs. Thus, branch-and-cut gives polynomial size
proofs overall for this family of instances.

Proof of Theorem 1.14. Recall that we restrict ourselves to the pure integer case, i.e., d = 0.
Consider any branch-and-cut proof for some instance. If no cutting planes are used in the proof,
this is a pure branch-and-bound proof and we are done. Otherwise, let N be a node of the proof
tree where a cutting plane ⟨a, x⟩ ≤ γ is used. Since we assume all cutting planes are rational, we
may assume a ∈ Zn and γ ∈ Z. Thus, N ′ = N ∩ {x : ⟨a, x⟩ ≥ γ + 1} is integer infeasible. Since
⟨a, x⟩ ≤ γ is in CP(N), by our assumption, there must be a branch-and-bound proof of polynomial
size based on D for the validity of ⟨a, x⟩ ≤ γ with respect to N . Since N ′ ⊆ N , by Lemma 2.8,
there must be a branch-and-bound proof for the validity of ⟨a, x⟩ ≤ γ with respect to N ′, thus
proving the infeasibility of N ′. In the branch-and-cut proof, one can replace the child of N by first
applying the disjunction {x : ⟨a, x⟩ ≤ γ} ∪ {x : ⟨a, x⟩ ≥ γ + 1} on N , and then on N ′, applying
the above branch-and-bound proof of infeasibility. We now have a branch-and-cut proof for the
original instance with one less cutting plane node. We can repeat this for all nodes where a cutting
plane is added and convert the entire branch-and-cut tree into a pure branch-and-bound tree with
at most a polynomial blow up in size.
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[11] Vašek Chvátal. Cutting-plane proofs and the stability number of a graph, Report Number
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