The problem of estimating the structure of a graph from observed data is of growing interest in the context of high-throughput genomic data and single-cell RNA sequencing in particular. These, however, are challenging applications, since the data consist of high-dimensional counts with high variance and overabundance of zeros. Here we present a general framework for learning the structure of a graph from single-cell RNA-seq data, based on the zero-inflated negative binomial distribution. We demonstrate with simulations that our approach is able to retrieve the structure of a graph in a variety of settings, and we show the utility of the approach on real data.

Structure learning for zero-inflated counts with an application to single-cell RNA sequencing data

Thi Kim Hue Nguyen;Monica Chiogna;Davide Risso
2023

Abstract

The problem of estimating the structure of a graph from observed data is of growing interest in the context of high-throughput genomic data and single-cell RNA sequencing in particular. These, however, are challenging applications, since the data consist of high-dimensional counts with high variance and overabundance of zeros. Here we present a general framework for learning the structure of a graph from single-cell RNA-seq data, based on the zero-inflated negative binomial distribution. We demonstrate with simulations that our approach is able to retrieve the structure of a graph in a variety of settings, and we show the utility of the approach on real data.
File in questo prodotto:
File Dimensione Formato  
AOAS1732_with_aqf.pdf

accesso aperto

Tipologia: Postprint (accepted version)
Licenza: Accesso libero
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF Visualizza/Apri
AOAS2203-043R1A0 (5).pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3465212
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact