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The problem of estimating the structure of a graph from observed data
is of growing interest in the context of high-throughput genomic data, and
single-cell RNA sequencing in particular. These, however, are challenging
applications, since the data consist of high-dimensional counts with high vari-
ance and over-abundance of zeros. Here, we present a general framework for
learning the structure of a graph from single-cell RNA-seq data, based on
the zero-inflated negative binomial distribution. We demonstrate with simu-
lations that our approach is able to retrieve the structure of a graph in a variety
of settings and we show the utility of the approach on real data.

1. Introduction. In recent years, a growing interest has developed around the problem
of retrieving, starting from observed data, the structure of graphs representing relationships
among variables of interest. In fact, reconstruction of a graphical model, known as structure
learning, traces back to the beginning of the nineties, and a vast literature exists that consid-
ers the problem from various perspectives, within both frequentist and Bayesian approaches
(see Drton and Maathuis (2017) for an extensive review). But a central role in the renewal of
interest on structure learning has been played by molecular biology applications. In this field,
the abundance of data with increasingly large sample sizes, driven by novel high-throughput
technologies, has opened the door for the development and application of structure learn-
ing methods, in particular applied to the estimation of gene regulatory or gene association
networks.

At the inception of transcriptomics, the technology of choice for measuring gene expres-
sion was the microarray assay, that, by optically scanning fluorophore intensities, provided
data on a continuous scale (Irizarry et al., 2003). When it came to (sparse) structure learn-
ing from these data, the first proposals assumed that data arose from a multivariate Gaussian
distribution, and took advantage of the many results and tools available for such family of
distributions (see Schäfer and Strimmer (2005); Junbai, Leo and Jan (2005); Peña (2008);
Yin and Li (2011), among others).

Later, a new technology allowed for the high-throughput sequencing of RNA molecules
(i.e., RNA-seq), and quickly established itself as the reference technology for the study of
genome-wide transcription levels (Wang, Gerstein and Snyder, 2009). One of the main ad-
vantages of RNA-seq over microarrays is that it allows to analyze small amounts of RNA,
making it feasible to study gene expression even at single-cell resolution (Kolodziejczyk
et al., 2015). This new technology provided statisticians with a wealth of novel problems.
Indeed, RNA-seq yields counts, rather than intensities on a continuous scale, as measures of
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gene expression. Data are usually high dimensional and, typically, come from skewed distri-
butions with high variance. Moreover, they very often show a large number of zeros, typically
larger than expected under a Poisson or negative binomial model (Van De Wiel et al., 2013).

Structure learning of graphs with such data was initially performed by exploiting data
transformations, such as log, Box-Cox, copulas, etc (Abegaz and Wit, 2015). Although data
transformation can work well in some circumstances, it can be also ill-suited, possibly leading
to wrong inferences in some circumstances (Gallopin, Rau and Jaffrézic, 2013). Awareness
of these problems fueled the development of methods for learning (sparse) graphical models
tailored to count data. Allen and Liu (2013), Yang et al. (2013) and, more recently, Nguyen
and Chiogna (2021) considered structure learning for Poisson and truncated Poisson counts.
A general class of models was studied in Yang et al. (2015), which considered graphical
models for the class of exponential family.

The challenges posed by RNA-seq technology are exacerbated in single-cell RNA se-
quencing (scRNA-seq). scRNA-seq allows the measurement of RNA from individual cells,
promising to permit the study of gene interactions at an unprecedented resolution (McDavid
et al., 2019). Some scRNA-seq platforms employ unique molecular identifiers (UMIs), which
help reduce amplification biases (Islam et al., 2014) by counting unique RNA molecules
rather than reads potentially representing the same molecule more than once. This implies
that the distribution of the resulting data is substantially different: read-count data typically
show larger counts than UMI data and a more pronounced bi-modality (Svensson, 2020).
Moreover, the small amount of RNA present in the cell and the technical limitations of the
sequencing platforms (e.g., a limited number of sequenced reads per cell) lead to higher vari-
ance and larger fraction of zero counts compared to “bulk” RNA-seq (Risso et al., 2018; Mc-
David et al., 2019). As a result, single-cell RNA-seq gene-wise data distributions are highly
skewed and show an abundance of zero counts. Inference using Gaussian models is definitely
infeasible even after variance stabilizing transformations and even models for count data may
suffer from high false discovery rates (see Gallopin, Rau and Jaffrézic (2013), and Section
6). To account for zero-inflation, McDavid et al. (2019) proposed a Hurdle model, equivalent
to a finite mixture of singular Gaussian distributions. The authors’ model, however, does not
account for the count nature of the data.

From this quick tour on problems and methods, it appears evident that principled solutions
to structure learning that account for the possibility of over-dispersion and/or zero-inflation
are still lacking. In this paper, we try to fill this gap. We present a general framework, based
on the zero-inflated negative binomial distribution, for learning the structure of a graph from
single-cell RNA-seq data. We focus in particular on UMI data, as its growing popularity
suggests that the majority of future studies will employ this technology.

The remainder of this article is organized as follows. In Section 2 we introduce a mo-
tivating dataset; we describe our proposed model in Section 3 and our structure learning
procedure in Section 4. One key question in the literature is whether zero inflation needs to
be accounted for in the data, we offer our perspective in Section 5. After exploring the be-
havior of our method in simulated data in Section 6, we apply our proposal to real single-cell
RNA-seq data in Section 7. Section 8 concludes the article with a discussion.

2. A motivating example: single-cell gene expression in the olfactory epithelium.
Despite the distributional challenges described in the previous section, single-cell data of-
fer an unprecedented opportunity to discover cellular dynamics, especially in developing cell
populations. Graphical models could be an important tool to learn gene interactions from
single-cell data, to learn how these change across conditions and throughout development,
and to identify potentially novel transcription factor target genes. While graphs are widely
used in scRNA-seq to group similar cells in the space of gene expression, our approach learns
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a graphical model considering genes as nodes. This allows us to model cells as i.i.d. obser-
vations from a multivariate distribution in which the genes are the variables and the cells are
considered a random sample from the cell population.

In particular, here, we study gene expression from the mouse olfactory epithelium (OE).
This tissue is made of two major mature cell types, olfactory neurons and sustentacular sup-
port cells. Furthermore, a stem cell niche provides a mechanism through which the tissue is
regenerated (Fletcher et al., 2017; Gadye et al., 2017). As the aim of the study is to under-
stand how stem cells mature into neurons following tissue damage, we focused only on the
cells in the neuronal lineage. Briefly, the olfactory reserve stem cells, called Horizontal Basal
Cells (HBC), become activated and subsequently develop into Globose Basal Cells (GBC)
and then into immature (iOSN) and finally mature olfactory neurons (mOSN). By recon-
structing the structure of the graph for each of these cell types separately, we hope to get a
glimpse of the relationships between genes in neuronal development. For instance, the cell
type that results in the most highly connected graph could indicate the most transcriptionally
active developmental stage (Fletcher et al., 2017).

3. Model Specification.

3.1. Preliminaries. A probabilistic graphical model requires the definition of a pair,
(G,F) say. Here, G = (V,E) represents an undirected graph, where V is the set of nodes,
and E = {(s, t) : s, t ∈ V, s 6= t} represents the set of undirected edges. Each node in the
graph corresponds to a random variable Xs, s ∈ V ; the existence of an edge (s, t) ∈ E indi-
cates the dependency of the random variables Xs and Xt. Moreover, F represents a family
of probability measures for the random vector XV , indexed by V and with support XV .

Thanks to the well known Markov properties (global, local, pairwise, see Lauritzen
(1996)), the pattern of edges in the graph translates into conditional independence proper-
ties for variables in XV , which, in turn, allow possible factorizations of F into smaller, more
tractable entities. In undirected graphical models, each absent edge (s, t) in E has the role of
portraying the conditional independence,

Xs ⊥⊥Xt|XV \{s,t},

and the family F is said to satisfy the pairwise Markov property with respect to G. The
smallest undirected graph G with respect to which F is pairwise Markov is given the name
conditional independence graph.

When all variables in XV are discrete with positive joint probabilities, as is the case of
this paper, the three kinds of Markov properties are equivalent, so that a factorization of the
joint probability distribution with respect to the cliques (fully connected subsets of vertices)
of the graph G is also guaranteed (Lauritzen, 1996, Chap. 3).

3.2. The model specification. Let xis be the gene expression for gene s ∈ V in cell i ∈
{1,2, . . . , n}, we assume that the distribution of each variable Xis, conditional to all possible
subsets of variables XiK , K ⊆ V is a zero-inflated negative binomial (zinb) distribution:
(3.1)
fzinb(xis;µis|K , θs, πis|K |xiK\{s}) = πis|Kδ0(xis) + (1− πis|K)fnb(xis, µis|K , θs|xiK\{s}),

where δ0(.) is the Dirac function, πis|K ∈ [0,1] is the probability that a 0 is sampled from
a distribution degenerate at zero and fnb(., µ, θ) denotes the probability mass function of the
negative binomial (NB) distribution with mean µ and inverse dispersion parameter θ. We
assume that

ln(µis|K) = νµs|K +
∑

t∈K\{s}

βµst|Kxit,(3.2)
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logit(1− πis|K) = νπs|K +
∑

t∈K\{s}

βπst|Kxit.(3.3)

A missing edge between node s and node t corresponds to the condition βµst|K = βµts|K =

βπst|K = βπts|K = 0, ∀K ⊆ V \ {s}. On the other hand, one edge between node s and node t
implies that at least one of the four parameters βµst|K , β

µ
ts|K , β

π
st|K , β

π
ts|K is different from 0.

This specification defines a family of models that includes the most common models
employed for count data and embraces a variety of situations. It is evident that, when
πs|K = 0, ∀ K ⊆ V \ {s}, the model reduces to a NB distribution, which, in turn reduces
to a Poisson distribution when the inverse dispersion parameter θs tends to infinity. When
πs|K > 0, zero-inflation comes into play and zero-inflated Poisson and NB models can be
considered. In this case, when βπst|K = 0, ∀ t ∈ K \ {s}, the neighborhood of a node s is
defined to be the set of effective predictors of µs|K and consists of all nodes t for which
βµst|K 6= 0. On the other side, when βµst|K = 0, ∀ t ∈K \ {s}, the neighborhood of a node s
is defined to be the set of effective predictors of πs|K and consists of all nodes t for which
βπst|K 6= 0. In other words, the family includes models in which the structure of the graph is
attributable only to one of the two parameter components, πs|K or µs|K .

The difficulty with our model specification is that the definition of a set of conditional
distributions does not guarantee the existence of a valid joint distribution, i.e., a joint distri-
bution that possesses the specified conditionals. This might create difficulties in interpreting
the resulting graph in probabilistic terms: if the joint distribution does not exist, graphical
separations stored in G as a result of our model specification might not correspond to con-
ditional independence properties on F . However, our formulation guarantees the existence
of the joint distribution in a number of relevant subcases. In the following theorem, we clar-
ify conditions for existence of a joint distribution coherent with the conditional specification
(see Section 1.1, Supplementary Material, for a proof).

THEOREM 1. Let XV = (X1,X2, . . . ,Xp) be a p-random vector with support XV . As-
sume that a set of univariate conditional probability mass functions of the kind (3.1) are given
for variables in XV . Then, a joint distribution having those conditionals exists if and only if
θs is constant for all s ∈ V , and all regression coefficients βµst|K are negative, ∀K ⊆ V.

The condition on negativity of local regression coefficients in (3.2) resembles a condition
known in the literature of Markov random fields known as “competitive relationship” (Besag,
1974). Generally speaking, the presence of only negative relations among entities is quite a
rare event and incapability of capturing positive dependencies might be a severe drawback in
various applications. Nevertheless, the existence of a joint distribution in these specific cases
assures that statistical guarantees hold for conditional approaches to structure learning such
as the one used in this paper and somehow softens the hazard of the use of such algorithms
outside the conditions of existence of a joint distribution.

4. Structure Learning. A conditional independence graph G = (V,E) on XV can be
estimated by estimating, for each node s ∈ V, its neighborhood. Hence, one can proceed by
estimating the conditional distribution of Xs|XV \s and fixing the neighborhood of s to be
the index set of variables XN(s) on which the conditional distribution depends.

To estimate the neighborhood of each node, we employ the PC-stable algorithm, a variant
of the PC algorithm first proposed by Spirtes, Glymour and Scheines (2000). The PC algo-
rithm starts with a complete graph on V. Marginal independencies for all pairs of nodes are
tested, and edges removed when marginal independencies are found. Then, for every pair
of linked nodes, independence is tested conditional to all subsets of cardinality one of the
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adjacency sets of the two nodes. This testing procedure is iterated, increasing in turn the size
of the conditioning sets, until this reaches its maximum limit, or a limit imposed by the user.
Reasons for choosing the PC algorithm are many, spanning from its consistency (assuming no
latent confounders) under i.i.d. sampling (Spirtes, Glymour and Scheines, 2000), to its ability
to deal with a large number of variables and only moderately large sample sizes. The variant
that we employ, PC-stable (Colombo and Maathuis, 2014), allows to control instabilities due
to the order in which the conditional independence tests are performed. To perform the tests,
deviance test statistics are employed, for which a chi-squared asymptotic distribution can be
obtained by standard asymptotic theory.

In what follows, let X = {x(1), . . . ,x(n)} be the collection of n samples drawn from the
random vectors XV , with x(i) = (xi1, . . . , xip), i = 1, . . . , n. Starting from the complete
graph, for each s and t ∈ V \{s} and for any set of variables S⊆ {1, . . . , p}\{s, t}, we test,
at some pre-specified significance level, the null hypothesis H0 : βµst|K = βµts|K = βπst|K =

βπts|K = 0, with K = S ∪ {s, t}. In other words, we test if the data support the existence
of the conditional independence relation Xs ⊥⊥ Xt|XS. If the null hypothesis is rejected,
there exists an edge (s, t) in the resulting graph. A control is operated on the cardinality of
the set S of conditioning variables, which is progressively increased from 0 to p − 2 or to
m, m< (p− 2).

Assume Xs|xK\{s} ∼ zinb(Xs;µs|K , θs, πs|K |xK\{s}), as in Equation (3.1). The condi-
tional log-likelihood for variable Xs given xK\{s} is obtained by

`s(νs|K ,βs|K , θs) =

n∑
i=1

lnfzinb(xis;µis|K , θs, πis|K |x
(i)
K\{s}),(4.1)

where νs|K ,βs|K are linked to πs|K ,µs|K through Equations (3.2) – (3.3). The estimates
ν̂s|K , β̂s|K , θ̂s of the parameters νs|K ,βs|K , θs are obtained by maximizing the conditional
log-likelihood given in Equation (4.1), i.e.,

(ν̂s|K , β̂s|K , θ̂s) = argmax(νs|K ,βs|K ,θs)∈R2|K|+1 `s(νs|K ,βs|K , θs).

See Section 1.2, Supplementary Material, for details on the estimation procedure. A deviance
test statistic for the hypothesis H0 : βµst|K = βπst|K = 0 can be obtained as

Ds|K = 2(`s(ν̂s|K , β̂s|K , θ̂s)− `s(ν̂0
s|K , β̂

0

s|K , θ̂
0
s)),

where ν̂0
s|K , β̂

0

s|K , θ̂
0
s are the maximum likelihood estimates of the parameters under H0.

It is readily available that Ds|K is asymptotically chi-squared distributed with 2-degrees of
freedom under the null hypothesis, provided that some general regularity conditions hold.

Remark 1. On assuming faithfulness of the node conditional distributions to the graph G,
consistency of the algorithm can be proved in the case of competitive relationships in µs|K
by suitably modifying results in Nguyen and Chiogna (2021). We recall that a distribution
PX is said to be faithful to the graph G if for all disjoint vertex sets A,B,C ⊂ V it holds

XA ⊥⊥XB|XC ⇒A⊥⊥G B|C,

where A⊥⊥G B|C means that A and B are separated in G by C. Thanks to the equivalence
between local and global Markov properties, faithfulness of the local distributions guarantees
faithfulness of the joint distribution.

Remark 2. Although a theoretical proof of convergence of the algorithm is in question in
the case of unrestricted relationships among variables, inference on the structure is still prin-
cipled within a pseudo-likelihood perspective, i.e., by approximating the likelihood function
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by a product of the conditional likelihood functions. Different pseudo-likelihood-based struc-
ture estimators have been shown to be consistent under a conditional model construction (see,
Imre and Zsolt (2006), among others). See also Nguyen and Chiogna (2021) for an empirical
exploration of convergence of a similar algorithm under the Poisson assumption in the case
of unrestricted relationships among variables.

Remark 3. A large sample size, as typical in the applications at hand, impacts on the
actual significance level of individual tests. Moreover, a multiplicity of tests are performed
by the algorithm. For this reason, we advice to set the nominal level of the test α to αn =
2(1 − Φ(nb)), where 0 < b < 1/2 is related to the average neighborhood size. This choice
is based on results in Nguyen and Chiogna (2021) and guarantees that the probability that
a type I or II error occurs in the whole testing procedure goes to zero as n→∞, i.e., it
asymptotically controls the family-wise error rate of all potential tests that could be done.

Remark 4. The chosen learning strategy has some advantages over alternative approaches
based on sparse regressions (see also Nguyen and Chiogna (2021) for an extended discussion
in the Poisson case). Sparsity can be easily implemented by a control on the conditional
set size, instead of a control on parameter magnitudes, which can lead to over-shrinkage.
Moreover, it offers computational advantages, especially when sparse networks are the target
of inference.

5. Zero inflation: a real issue?. The need for modeling zero-inflation in single cell data
is a question at the core of an ongoing debate, with several authors arguing that the negative
binomial distribution is sufficient to fit single-cell RNA-seq data when unique molecular
identifiers are used (Vieth et al., 2017; Townes et al., 2019; Svensson, 2020; Sarkar and
Stephens, 2021). Indeed, the ability to distinguish between a non zero-inflated distribution
and zero-inflated alternatives highly depends on the relative size of the parameters of the
distributions.

To gain a better understanding of this problem, we have tried to assess the misspecification
cost due to assuming a zero-inflated distribution when no zero inflation occurs. To this aim,
we confined ourselves to a univariate case with no covariates, fixed a non zero-inflated model
and measured the model misspecification cost occurring when using its zero-inflated coun-
terpart by using the squared Hellinger distance as loss function. Such a loss function should,
in principle, indicate, in an inferential sense, how far apart the two distributions are.

To this aim, let Y = {0,1,2, . . . ,+∞} be the support of a discrete variable Y . We con-
sider for Y a true probability distribution P (y;φ0), φ0 ∈ Φ, as well as a family F =
{Q(y;ψ), ψ ∈ Ψ}, Φ ⊆ Ψ, of zero-inflated versions of the true probability distribution
P (y;φ0). The squared Hellinger distance between two probability distributions P and Q
is defined as

d2h(P,Q) =
1

2

∑
y∈Y

(
√
py −

√
qy)

2

= 1−
∑
y∈Y

√
pyqy,

where py = P (y;φ0) and qy =Q(y;ψ).
In particular, assume that P is a NB distribution with φ0 = (µ0, θ0) and Q is a zinb distri-

bution, defined as

Q(y;ψ) = πδ0(0) + (1− π)P (y;φ0),

with ψ = (φ0, π). Hence, the squared Hellinger distance of P and Q can be written as

d2h(P,Q) = 1−
√

1− π(1− P (0;φ0))−
√
P (0;φ0)

√
π+ (1− π)P (0;φ0).
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Figure 1, and Supplementary Table S1 show the value of the Hellinger distance in a number
of cases. As expected, the distance increases with the probability of zero inflation π.However,
when the inverse dispersion parameter θ0 and/or the mean µ0 are small, the distance between
the distributions is small even in the case of moderate to large π. In fact, when µ0 and θ0 are
both small (low mean and high variance) the two distributions are close even when π = 0.9.
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Fig 1: Hellinger distance between zinb and NB distribution.

As, broadly speaking, maximum likelihood estimators and minimum Hellinger distance
estimators are asymptotically equivalent, it emerges that, in inferential terms, the degree of
zero inflation of a true model could be difficult to ascertain, as suitable choices of the param-
eters of the non contaminated component may possibly absorb the excess of zeros generated
by the contamination. This is despite identifiability of the zinb model (see Section 1.3, Sup-
plementary Material, for a proof). These remarks might contribute to the ongoing debate
about existence of zero-inflation from a novel perspective.

6. Simulations. We devote this section to the empirical study of consistency of the pro-
posed algorithms. In particular, we concentrate on the ability of proposed methods to recover
the true structure of the graphs. We also list the running time of each algorithm. As mea-
sures of the test’s accuracy, we adopt three criteria including Precision P ; Recall R; and their
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harmonic mean, known as F1-score, respectively defined as

P =
TP

TP + FP
, R=

TP

TP + FN
, F1 = 2

P.R

P +R
,

where TP (true positive), FP (false positive), and FN (false negative) refer to the number of
inferred edges (Liu, Roeder and Wasserman, 2010).

The considered algorithms are listed below, along with specifications, if needed, of tun-
ing parameters. For all PC-like algorithms, we let the maximum cardinality of conditional
independence set be m= 8 for p= 10 and m= 3 for p= 100.

- PC-zinb1: zinb models in which the structure of the graph is attributable to both of the
two parameter components µs|K and πs|K ;

- PC-zinb0: zinb models in which the structure of the graph is attributable to only the param-
eter component µs|K and consider πs|K as a constant (i.e., βπst|K = 0, ∀ t ∈K \{s}, ∀ s ∈
V );

- PC-nb: Negative binomial model, i.e., the special case of zinb models where πs|K = 0;
- PC-pois: Poisson model (Nguyen and Chiogna, 2021).

6.1. Data generation. For two different cardinalities (p= 10 and p= 100), we consider
three graphs of different structure: (i) a scale-free graph, in which the node degree distribution
follows a power law; (ii) a hub graph, where each node is connected to one of the hub nodes;
(iii) a Erdos-Renyi graph, where the presence of the edges is drawn from independent and
identically distributed Bernoulli random variables.

To construct the scale-free and Erdos-Renyi networks, we employed the R package igraph
(Csardi et al., 2006). For the scale-free networks, we followed the Barabasi-Albert model
with constant out-degree of the vertices ν = 2 for p = 10 and ν = 0.2 for p = 100. For
the Erdos-Renyi networks, we followed the Erdos-Renyi model with probability to draw
one edge between two vertices γ = 0.3 for p = 10 and γ = 0.03 for p = 100. To construct
the hub networks, we assumed 2 hub nodes for p = 10, and 5 hub nodes for p = 100. See
Supplementary Figure S2 and Supplementary Figure S3 for representative plots of the three
chosen graphs for p= 10 and p= 100, respectively.

For the given graphs, 50 datasets were sampled with four different sample sizes, n =
{100,200, 500,1000} for p= 10, and three different sample sizes, n= {200,500,1000} for
p = 100. To generate the data, we followed the approach of the Poisson models in Allen
and Liu (2013). Let X ∈ Rn×p be the set of n independent observations of random vector
X. Then, X is obtained from the following model X = YA+ ε, where Y = (yst) is an n×
(p+ p(p− 1)/2) matrix whose entries yst are realizations of independent random variables
Yst ∼ zinb(µ, θ,π) (or NB(µ, θ); or Pois(µ)) and ε= (est) is an n×p matrix with entries est
which are realizations of random variables Est ∼ zinb(µnois, θ, π) (or nbinom(µnois, θ); or
Pois(µnois)). This approach leverages the additive property of these distributions and allows
us to generate the required dependencies. In particular, let B be the adjacency matrix of a
given true graph, then A takes the following form A = [Ip;P � (1ptri(B)T )]T . Here, P is
a p × (p(p − 1)/2) pairwise permutation matrix, � denotes the elementwise product, and
tri(B) is the (p(p− 1)/2)× 1 vectorized upper triangular part of B (Allen and Liu, 2013).

6.2. Results. Figures 2 and 3 show the Monte Carlo means of the F1-scores for each of
the considered methods with p = 100 and low signal-to-noise ratio (µnoise = 0.5), at high
(µ= 5) and low (µ= 0.5) mean levels, respectively. Each value is computed as the average
of the 50 values obtained by simulating 50 samples for the model corresponding to each net-
work. Monte Carlo means of Precision P , RecallR, and F1-score are given in Supplementary
Tables S2–S4.
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The two values of µ= {5,0.5} were chosen to mimic typical values observed in real full-
length and droplet-based datasets, respectively. In fact, the mean expression level of tran-
scription factors in the dataset presented in Section 2 is 0.67 (median 0.14), while the mean
expression level of transcription factors in a similar experiment performed with a full-length
protocol (Fletcher et al., 2017) is 32.03 (median 7.89).

These results indicate that the PC-zinb1 algorithm and its variants (PC-zinb0, PC-nb, PC-
pois) are consistent in terms of reconstructing the structure from given data. In fact, when the
model is correctly specified, the F1-scores of the algorithms are close to 1 when n≥ 1000 in
all scenarios. This means that the proposed algorithm is able to recover the underlying graph
from the given data for both low (Fig. 3) and high (Fig. 2) mean levels.

When the data are generated with a high mean level (µ = 5), the PC-pois algorithm per-
forms well only when it is the true model, i.e., for data generated from Poisson random
variables (Fig. 2; Supplementary Table S4; Supplementary Figs. S10 and S12). In the other
scenarios, PC-pois often shows a low Precision (Fig. 2; Supplementary Tables S2 and S3;
Supplementary Fig. S10). This result is expected since the node conditional Poisson dis-
tributions are unable to model the over-dispersion generated by the (zero-inflated) negative
binomial distributions.

On the other end of the spectrum, the more general zinb models work well in all scenarios
(Fig. 2; Supplementary Tables S2 – S4; Supplementary Figs. S10 and S12). This is not sur-
prising as the data are generated according to models (e.g, Poisson, NB) that can be seen as
special cases of the zinb distribution, which means that in all tested scenarios the zinb model
is correctly specified.

The PC-nb algorithm, based on the negative binomial assumption, performs reasonably
well (Fig. 2; Supplementary Tables S2 – S4; Supplementary Figs. S10 and S12). However,
in the hub graph (center column of Fig. 2), its performances are slightly worse than the zinb
models, showing low Precision when the true data generating distribution is node conditional
zinb (Supplementary Fig. S10; Supplementary Table S2). This result indicates that a zero
inflated negative binomial model may be needed when the mean is large (Risso et al., 2018).

As we expected from the considerations reported in Section 5, the performances of the
variants of PC-zinb are quite similar to each other when the mean and the dispersion pa-
rameter are both small, i.e., when the data are characterized by low mean and high variance
(µ= 0.5, θ = 0.5; Fig. 3; Supplementary Tables S2 – S4; Supplementary Figs. S11 and S13).
This might be explained by the fact that a suitable choice of the parameters may allow non-
zero inflated models to absorb the excess of zeros (see Section 5 for more details). Therefore,
when applying our approach on this type of data, one should use the simplest variant, (i.e.,
PC-pois) to leverage the better computational performance (see last column of Supplemen-
tary Table S2 – S4).

Moreover, we see no difference in the performance of the PC-zinb variants (PC-zinb1 and
PC-zinb0). This is perhaps not surprising, as we simulated the same structure of the graph
for both µ and π. These results suggest that the information inferred from µ is sufficient to
reconstruct the correct graph in this case.

Finally, we compare the results to those obtained with the algorithm of McDavid et al.
(2019), which employs a Gaussian Hurdle model (see Supplementary Table S2– S4). The
Hurdle model, applied to log transformed data shifted by 1, performs reasonably well only
with a sufficient sample size (n ≥ 1000) in the case of Erdos-Renyi and scale-free graphs,
but is unable to correctly reconstruct the hub graphs even at large sample sizes. An extensive
analysis of the results of the hub graph case revealed that the graph recovered by the Hurdle
model is almost empty in a number of cases, especially at low sample sizes.

We have focused here on p = 100, as this setting is closer to our real application. The
results for p = 10 are reported in Supplementary Figures S4–S9 and Supplementary Tables
S5–S7 and lead to similar conclusions.
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Fig 2: F1-score of the considered algorithms for the three types of graphs in Supplementary
Figure S3 with p= 100, µ= 5, θ = 0.5, π = 0.7: scale-free; hub; Erdos-Renyi. The data were
simulated from Poisson (top), NB (middle), and zinb (bottom) models. PC-zinb1: zinb model
in which the structure of the graph is attributable to both of the two parameter components
µs|K and πs|K ; PC-zinb0: zinb model in which the structure of the graph is attributable to
only the parameter component µs|K and πs|K is constant; PC-nb: Negative binomial model,
i.e., the special case of zinb models where πs|K = 0; PC-pois: Poisson model of Nguyen and
Chiogna (2021).
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Fig 3: F1-score of the considered algorithms for the three types of graphs in Supplemen-
tary Figure S3 with p = 100, µ = 0.5, θ = 0.5, π = 0.7: scale-free; hub; Erdos-Renyi. The
data were simulated from Poisson (top), NB (middle), and zinb (bottom) models. PC-zinb1:
zinb model in which the structure of the graph is attributable to both of the two parame-
ter components µs|K and πs|K ; PC-zinb0: zinb model in which the structure of the graph is
attributable to only the parameter component µs|K and πs|K is constant; PC-nb: Negative bi-
nomial model, i.e., the special case of zinb models where πs|K = 0; PC-pois: Poisson model
of Nguyen and Chiogna (2021).
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7. Results on real data. We demonstrate our method on the motivating example dataset
described in Section 2. To this aim, we analyzed a set of cells, assayed with 10X Genomics
(v2 chemistry) after injury of the OE, to characterize HBCs and their descendants during
regeneration (Brann et al., 2020). Starting from an initial set of 25,469 cells, low-quality
samples as well as potential doublets were removed as described in Brann et al. (2020). After
clustering with the Leiden algorithm (Traag, Waltman and van Eck, 2019), known marker
genes were used to identify cell types. We discarded the cell types outside of the neuronal
lineage (macrophages, sustentacular cells, and microvillar cells), obtaining a dataset consist-
ing of 7782 HBCs, 5418 activated HBCs (HBC*), 755 GBCs, 2859 iOSN, and 929 mOSN.
For more details on the data preprocessing and cell annotation, see Brann et al. (2020).

We perform two complementary analyses on two different subsets of the dataset. First,
we focus on transcription factor (TF) genes, with the aim of identifying important networks
of regulation in the different cell types that constitute the neuronal developmental lineage.
We then turn our attention to the activated HBCs, a critical stage of neurogenesis, with the
aim of identifying important transcription factors that regulate genes important for stem cell
differentiation.

7.1. Transcription factor genes. Our first analysis focuses on the total set of 1543 known
transcription factors in mouse, which are thought to regulate the observed differentiation
processes. We furthermore focus on the differentiation path starting at the HBC* stage (i.e.,
activated stem cells upon injury) up to mature neurons, therefore investigating the entire
neuronal lineage in the trajectory of this dataset. As previously discussed in Section 2, we
expect four different cell types along this path, being respectively HBC*, GBC, iOSN and
mOSN, and we estimate the structure of the graph for each of these cell types. We selected
the top 1000 cells with the highest means from the cell types that had more than 1000 cells
(HBCs, HBC*, iOSN) to ensure a fair comparison between groups. In fact, the power of
our algorithm to detect edges increases with the sample size and since one of the goals of
this analysis is to compare the graphs across cell types we want to avoid a confounding
effect due to the number of cells. See Supplementary material, Section 2, for details on the
preprocessing.

The average degree of the graphs is highest at the activated stem cell stage, with an aver-
age degree of 4, and decreases as cells develop to mature neurons, with average degrees of
3.9,3.3 and 3.5 for the GBC, iOSN and mOSN networks, respectively. To interpret the graph
structure, we focus on the 2-core of each network, i.e., we retain TFs that are associated with
at least two other TFs, a preprocessing step that helps in understanding the core structure
(Wang and Rohe, 2016).

We identify communities in each graph using the Leiden algorithm (Traag, Waltman and
van Eck, 2019) and, in order to validate the associations discovered by PC-zinb, we inter-
pret each of the communities by computing overlaps with known functional gene sets in the
MSigDB database (Subramanian et al., 2005; Liberzon et al., 2015), see Supplementary Ma-
terial Section 2 for details. The interpretation of these communities relies on known processes
involved in the development of the olfactory epithelium as found by previous research (e.g.,
Fletcher et al. (2017); Gadye et al. (2017)).

In the HBC* cell type, cells have been injured ∼ 24h ago, so we expect response to injury,
and stem cells actively preparing for differentiation, as well as replication to produce more
stem cells to repair the epithelium. Four communities are discovered in the association net-
work (Figure 4), broadly involved in either cell cycle, epigenetic mechanisms and (epithelial)
cell differentiation (Supplementary Table S9). These communities reflect the need to divide
in order to produce more cells, epigenetic mechanisms that are likely required to activate
molecular processes upon injury, and the differentiation of stem cells to restore the damaged
epithelium.
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Fig 4: Hive plots (Krzywinski et al., 2012; Bryan, 2020) of TF gene networks estimated with
PC-zinb. Gene communities were estimated using the Leiden algorithm and are represented
on the axes of the plots and by different edge colors. The length of each axis is proportional to
the size of the corresponding community; edges between two nodes in the same community
are drawn in a community-specific color, while edges between two nodes in two different
communities are colored in gray; hub nodes, defined as nodes with more than 9 neighbors,
are represented as solid black circles. Each axis (community) was annnotated with the most
enriched gene set (see Supplementary Material Section 2).
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In the GBC cell type, we expect cells to proliferate to produce immature neurons. We dis-
cover four communities (Figure 4), broadly involved in DNA replication, cell proliferation,
signaling, expression regulation and cell differentiation (Supplementary Table S10). Relevant
pathways, such as the P53 and notch signaling pathways, are also recovered for specific com-
munities, and have previously been found to be involved in neurogenesis in neuroepithelial
stem cells (Marin Navarro et al., 2020; Wang et al., 2011).

In the immature olfactory sensory neuron (iOSN) stage, we expect basal cells to start de-
veloping into immature neurons. Four communities are discovered (Figure 4), of which one
community comprises the majority of the graph, i.e., 63% of all TFs retained in the graph,
and importantly is involved in neurogenesis (Supplementary Table S11). Other, smaller, com-
munities are enriched in processes such as cell and axon growth, wound healing, signaling
and cell population maintenance.

Finally, in the mature olfactory sensory neuron stage (mOSN), we expect the final dif-
ferentiation to functional neurons. Five communities are discovered (Figure 4), again with
very different sizes. The largest communities are enriched in broader processes related to
chromatin organization and transcription, possibly reflecting the basic changes required for
cells to develop into and maintain at the mature stage (Supplementary Table S12). The third
largest community is enriched specifically in the TGF-Beta pathway, known to be required
for neurogenesis, and to modulate inflammatory responses (Meyers and Kessler, 2017).

Taken together, these results confirm previously known processes associated with differ-
entiation of HBCs into mature neurons upon injury, with relevant processes highlighted by
communities of transcription factors. Furthermore, while the community detection results are
useful to validate the estimated graphs, they also provide a gateway to more detailed analysis,
e.g., investigation of hub genes (e.g., Chen et al. (2018)) or master regulators of development
(e.g., Sikdar and Datta (2017)), therefore unlocking powerful interpretation of single-cell
RNA-seq datasets. We give an example of such detailed analysis in the next paragraph, in
which we focus on the role of the Trp63 TF in activated HBCs.

7.2. Stem cell differentiation. Our second analysis focuses on a set of 242 genes, anno-
tated with the term “stem cell differentiation” in the Mouse Genome Database (Bult et al.,
2019), expressed in the activated HBC cell type. Following the same preprocessing employed
for the first analysis, and detailed in Section 2 of the Supplementary Material, we obtain a
dataset consisting of 1000 cells and 160 genes.

Our goal here is to infer the interactions among genes, with a particular focus on the role
of TFs in regulating target genes. Importantly, in this second analysis, we include many genes
that are not TFs, allowing us to focus on which genes are regulated by TFs at this specific
point in development.

We expect to find several TFs as hub nodes in the graph. In fact, hub nodes, i.e., nodes
with a particularly high number of connections, may represent sites of signaling convergence,
potentially indicating those genes that regulate other genes.

The PC-zinb algorithm inferred a sparse graph, shown in Figure 5, where hub nodes are
displayed with a circle or a hexagon (when they are TFs). It is immediate to recognize im-
portant TFs previously demonstrated to be involved with stem cell differentiation, e.g., Trp63
(Senoo et al., 2007), Sox2 (Liu et al., 2013), and Sox9 (Jo et al., 2014). Other hub nodes
include genes that, while not TFs, have been shown to play a central role in this biological
process. For instance, Epcam is known to be essential for the maintenance of self-renewal in
stem cells (González et al., 2009). Another example is Ptn, the gene encoding the pleiotrophin
growth factor, which has significant roles in cell growth and survival and has been demon-
strated to be essential for stem cell maturation and neuronal development (Tang et al., 2019).

We next focus on one of the most important TFs for stem cell activation, Trp63, by zoom-
ing in the sub-network made of this gene and its direct neighbors (Fig. 6). Trp63 is one of the



STRUCTURE LEARNING FOR ZERO-INFLATED COUNTS 15

Sox10

Sema3f

Tacstd2

Ncoa3

Ext1

Sema7a

Ptn

Ovol2

Sema5a

Yap1

Smo

Jag1

Ccnk

Sox21

N4bp2l2

Slc4a11

Dicer1

Bmp4

Coro1c

Sema6d

Hif1a

Bmpr1a

Mtf2 Ell3

Six1

Nrp1

Rest

Pax6Foxa1

Foxc2

Kit

Mtch2

Sox11

Setd6

Ociad1

Nfe2l2

Nolc1

Isl1

Nudt21
Rbpj

Mettl5

Ltbp3

Mef2c

Gpm6a

Pus7

Acvr1 Cfl1

Fam172a

Nrg1

Sema3c

Phf19

Smad4

Pdcd6

Sfrp1

Sema3e

Notch1

Tcof1

Nsun2

Kitl

Sema3a

Tgfb2

Hspa9

Msx2

Prdm4

Sema3d

Hnrnpu

Cdh2

Sema4d

Pwp1

Fzd1

Ptprc

Epcam

Rbm24

Vsir

Cdk6

Zfp281

Zfp36l2

Jarid2

Cited2

Cdc42

Klhl12

Eif2ak2

Edn1

Ap2a2

Phactr4

Wnt10a

Lbh

Tfap2a

Fgfr2

Ythdf2

Xrcc5

Nrtn

Foxc1

Setd1a

Pum1

Fn1

Srf

Cdk13

Mapk3

Pef1

Nrp2

Runx2
Sox9

Sox6

Mllt3

Sema4c

Gsk3b

Etv4

Sema4b
Kdm4c

Rdh10

Hes1

Stat3

Chd2

Sema6c

Trp63

Cdk12

Tead2

Sema4a

Tbx1

Msi2

Sox5

Dhx36

Mapk1

Psmd11

Lrp6

Sox2

Snai2

Trp53

Wnt7a

Foxo4

Lmbr1lAnxa6

Smyd5

Efnb1
Wnt7b

Ctnnb1

Tcf7l1

Lama5

L3mbtl2

Setd2

Kdm3a

Bmp7

Fig 5: Network of Stem cell differentiation gene set estimated with PC-zinb. Hub nodes are
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most important hubs in the network inferred by PC-zinb, with 20 connections. To validate
the biological meaning of these connections, we leverage existing external data. In particular,
Riege et al. (2020) performed a meta-analysis of 20 publicly available Chromatin Immuno-
precipitation (ChIP-seq) datasets to create a curated catalog of p63 (the human ortholog of
Trp63). Out of the 20 direct targets of Trp63 in our network, 15 have been confirmed by Riege
et al. (2020) as direct targets of p63, i.e., there is experimental evidence that the p63 protein
binds either at the transcription start site (TSS) or upstream, indicating that p63 is either a
promoter or enhancer of these genes (Supplementary File 3 of Riege et al., 2020).
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We want to stress that PC-zinb is able to find these putative TF-target pairs only on the
basis of gene expression, hence proving itself as a useful tool to predict novel TF targets to
be further validated with other techniques.

8. Discussion. In this work, we have introduced PC-zinb, a class of constraint-based
algorithms for structure learning, supporting possibly overdispersed and zero-inflated count
data. In focusing on these two nonstandard but realistic situations, our framework goes be-
yond what has so far been proposed in the literature. Moreover, by leveraging the proposal
in Nguyen and Chiogna (2021) – shown to be competitive with state-of-the-art methods sup-
porting count data – we inherit the benefits of that approach, most notably: the existence
of a theoretical proof of convergence of the algorithm under suitable assumptions; an easy
implementation of sparsity by a control on the number of variables in the conditional sets;
invariance to feature scaling. On the synthetic datasets considered in Section 6, we showed
that the algorithms work well in terms of reconstructing the structure from given data for
large enough sample sizes, while providing biologically coherent information and insight on
the real dataset analyzed in Section 7.

Our simulation studies allow us to derive various recommendations on the use of PC-zinb.
Clearly, these do not rule out sensitivity analyses with respect to both model specification
and tuning of the algorithms, which remain an important part of the model criticism process.
A control of the level of significance of the tests with respect to the sample size, n, and
the expected size of the neighborhood of each node, b, is highly recommended to guarantee
good reconstruction abilities. As in real applications knowledge of the expected size of the
neighborhood might be difficult to elicit, it may be prudent to try a range of values for b,
and check stability of results. This might also generate a sequence of models of decreasing
complexity for increasing values of b and whose dynamic might also point researchers to the
most significant connections.

If only the structure of the graph is of interest, irrespective of the strength of the links
among variables, we suggest making use of the Poisson variant of the algorithm when the
mean of the variables is small, so as to reduce computational complexity (Supplementary
Tables S15 and S16). Moreover, when the mean of the variables is small, presence of zero-
inflation might not influence reconstruction abilities of the algorithms, as also confirmed by
the small study on zero-inflation in Section 5. In these situations, we recommend using, at
least in the first instance, non zero-inflated models.

Clearly, in many applications, learning the structure might not be the only goal, and one
might want to gain a quantitative insight into the dependence structure of the underlying
process, by measuring the sign and the strength of the relations pictured in the graph. If
the distribution needs also to be explicitly estimated, this can be achieved by using any of
several existing parameter estimation methods conditional on the fixed structure learned by
our approach.

If the null hypothesis H0 : βµst|K = βπst|K = 0 fails to be rejected, PC-zinb will remove the
edge between variables s and t. While such a procedure can only be justified in settings with
high power, our simulation study shows that, even in settings with small sample sizes, our
algorithm is able to achieve high power, and the correct underlying structure of the graph can
be learned successfully.

While it is straightforward to interpret the case in which the neighborhood of s is defined
by the predictors of µs|K , i.e., gene dependencies act on the average gene expression, the
case of structure on πs|K requires more thought. If zero inflation represents true biological
signal, we can interpret a non-zero βπst|K as the fact that the presence of gene t will influence
the presence of gene s, regardless of their average expression. This is similar to McDavid
et al. (2019). If zero inflation represents only technical noise, a simpler model with constant
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πs|K might be preferable. This is a special case of our general model. Since it is unclear what
is the true nature of zero inflation in scRNA-seq data, we opted for generality in our model
specification. Furthermore, having a general model expands the set of applications in which
our approach may be useful.

The question of whether zero-inflated models are useful for the analysis of scRNA-seq
data has been frequently posed in the recent literature. In Section 5 we try to shed some
light on why a negative binomial distribution can fit UMI data well, as observed by Svensson
(2020) and Sarkar and Stephens (2021) among others (see also our Figure 3). We show that
in the case of low mean and high variance the zinb and NB distributions are very close to
each other, rendering the question of whether UMI data are zero inflated not. However, we
also show that in real data zinb and NB models lead to different results, albeit with decent
concordance between the inferred graphs (Supplementary Table S14). This result is only
partially in agreement with those of Sarkar and Stephens (2021), in which the authors found
that only a small percentage of genes show evidence of zero inflation. However, while Sarkar
and Stephens (2021) focus much of their attention to the case of univariate gene expression,
modeling zero inflation may be important when looking at correlation between genes (see
also Yang and Ho, 2021).

Latent or unmeasured variables might induce associations between observed variables that
can be spurious. Theoretical proposals are available to deal with the issue of latent factors in
the setting in which the latent and observed variables are jointly Gaussian with the condi-
tional statistics of the observed variables conditioned on the latent variables being specified
by a graphical model (Chandrasekaran, Parrilo and Willsky, 2012), but, to the best of our
knowledge, no similar results are available for other families of models. For this reason, in
our paper, we simply leverage on convergence of the PC algorithm to the model marginalized
over the latent factors.

As for the treatment of observed covariates and/or confounding factors, our proposed PC
algorithm – that decomposes the structure learning problem into a series of tests performed on
conditional log-likelihoods of each variable conditional on other variables – naturally allows
to incorporate the covariates into the conditional regression models and, therefore, to estimate
a covariate-adjusted structure for the graph. However, challenges remain if introduction of
covariates augment the dimension of the conditional regression models to the point that one
needs to resort to penalized tools. The treatment of both observed and latent covariates will
be the object of future work.

Our real data analysis, aimed at assessing biological validity of the reconstructed net-
work, has demonstrated the great importance of finding meaningful visualizations of large
complex networks. Our proposal, based on a search for communities of variables and their
association to gene ontologies via enrichment analysis, allowed us to confirm both biological
interpretability of the estimated structure, and to contribute to our understanding of which
and where biological processes are occurring.

9. Software. The methods presented in this article are available in the learn2count R
package, available at https://github.com/drisso/learn2count. The code to
reproduce the analyses of this paper is available at https://github.com/drisso/
structure_learning.
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