Data-driven control of nonlinear dynamical systems is a largely open problem. In this paper, building upon the theory of Koopman operators and exploiting ideas from policy gradient methods in reinforcement learning, a novel approach for data-driven optimal control of unknown nonlinear dynamical systems is introduced.
Data-Driven Control of Nonlinear Systems: Learning Koopman Operators for Policy Gradient
Zanini, F
;Chiuso, A
2021
Abstract
Data-driven control of nonlinear dynamical systems is a largely open problem. In this paper, building upon the theory of Koopman operators and exploiting ideas from policy gradient methods in reinforcement learning, a novel approach for data-driven optimal control of unknown nonlinear dynamical systems is introduced.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.