Parametric techniques commonly rely on specific distributional assumptions. It is therefore fundamental to preliminarily identify the eventual violations of such assumptions. Therefore, appropriate testing procedures are required for this purpose to deal with a the goodness-of-fit (GoF) problem. This task can be quite challenging, especially with small sample sizes and multivariate data. Previous studiesshowed how a GoF problem can be easily represented through a traditional two-sample system of hypotheses. Following this idea, in this paper, we propose a multi-aspect permutation-based test to deal with the multivariate goodness-of-fit, taking advantage of the nonparametric combination (NPC) methodology. A simulation study is then conducted to evaluate the performance of our proposal and to identify the eventual critical scenarios. Finally, a real data application is considered.
A Multi-Aspect Permutation Test for Goodness-of-Fit Problems
Arboretti, R
;Barzizza, E;Biasetton, N;Ceccato, R;Corain, L;Salmaso, L
2022
Abstract
Parametric techniques commonly rely on specific distributional assumptions. It is therefore fundamental to preliminarily identify the eventual violations of such assumptions. Therefore, appropriate testing procedures are required for this purpose to deal with a the goodness-of-fit (GoF) problem. This task can be quite challenging, especially with small sample sizes and multivariate data. Previous studiesshowed how a GoF problem can be easily represented through a traditional two-sample system of hypotheses. Following this idea, in this paper, we propose a multi-aspect permutation-based test to deal with the multivariate goodness-of-fit, taking advantage of the nonparametric combination (NPC) methodology. A simulation study is then conducted to evaluate the performance of our proposal and to identify the eventual critical scenarios. Finally, a real data application is considered.File | Dimensione | Formato | |
---|---|---|---|
stats-05-00035-v2.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
273.77 kB
Formato
Adobe PDF
|
273.77 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.