Electric Vehicles (EVs) represent a green alternative to traditional fuel-powered vehicles. To enforce their widespread use, both the technical development and the security of users shall be guaranteed. Users' privacy represents a possible threat that impairs the adoption of EVs. In particular, recent works showed the feasibility of identifying EVs based on the current exchanged during the charging phase. In fact, while the resource negotiation phase runs over secure communication protocols, the signal exchanged during the actual charging contains features peculiar to each EV. In what is commonly known as profiling, a suitable feature extractor can associate such features to each EV.In this article, we propose EVScout2.0, an extended and improved version of our previously proposed framework to profile EVs based on their charging behavior. By exploiting the current and pilot signals exchanged during the charging phase, our scheme can extract features peculiar for each EV, hence allowing...

EVScout2.0: Electric Vehicle Profiling through Charging Profile

Brighente, Alessandro
;
Conti, Mauro;Donadel, Denis;Turrin, Federico
2024

Abstract

Electric Vehicles (EVs) represent a green alternative to traditional fuel-powered vehicles. To enforce their widespread use, both the technical development and the security of users shall be guaranteed. Users' privacy represents a possible threat that impairs the adoption of EVs. In particular, recent works showed the feasibility of identifying EVs based on the current exchanged during the charging phase. In fact, while the resource negotiation phase runs over secure communication protocols, the signal exchanged during the actual charging contains features peculiar to each EV. In what is commonly known as profiling, a suitable feature extractor can associate such features to each EV.In this article, we propose EVScout2.0, an extended and improved version of our previously proposed framework to profile EVs based on their charging behavior. By exploiting the current and pilot signals exchanged during the charging phase, our scheme can extract features peculiar for each EV, hence allowing...
2024
File in questo prodotto:
File Dimensione Formato  
3565268.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3457949
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 6
social impact