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EVScout2.0: Electric Vehicle Profiling through Charging
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EVs (Electric Vehicles) represent a green alternative to traditional fuel-powered vehicles. To enforce their

widespread use, both the technical development and the security of users shall be guaranteed. Users’ privacy

represents a possible threat that impairs the adoption of EVs. In particular, recent works showed the feasibility

of identifying EVs based on the current exchanged during the charging phase. In fact, while the resource ne-

gotiation phase runs over secure communication protocols, the signal exchanged during the actual charging

contains features peculiar to each EV. In what is commonly known as profiling, a suitable feature extractor

can associate such features to each EV.

In this article, we propose EVScout2.0, an extended and improved version of our previously proposed frame-

work to profile EVs based on their charging behavior. By exploiting the current and pilot signals exchanged

during the charging phase, our scheme can extract features peculiar for each EV, hence allowing their pro-

filing. We implemented and tested EVScout2.0 over a set of real-world measurements considering over 7,500

charging sessions from a total of 137 EVs. In particular, numerical results show the superiority of EVScout2.0

with respect to the previous version. EVScout2.0 can profile EVs, attaining a maximum of 0.88 for both recall

and precision scores in the case of a balanced dataset. To the best of the authors’ knowledge, these results set

a new benchmark for upcoming privacy research for large datasets of EVs.
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1 INTRODUCTION

EVs represent one of the technologies enabling a solution for mitigating petroleum consumption
and the consequent reduced emissions amount. Multiple countries have already started providing
financial incentives to facilitate the purchasing and widespread of EVs ownership [46]. The EV
global forecast expects a compound annual growth rate of 29% over the next 10 years, with total
EV sales reaching up to 31.1 million by 2030 [17]. Among the factors decreasing the adoption
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of EVs is consumers’ concerns regarding the availability of charging infrastructures [17]. In fact,
while gas stations are widely deployed in cities and rural areas, EVSEs (Electric Vehicle Supply

Equipments) are not deployed in a sufficient number or, in some areas, are not present. Although
charging stations may be deployed at house premises, the absence of publicly available EVSEs
represents a limit, as a user is forced to limit the traveling distance to stay close to a charging point.
To mitigate this issue and increase the interest towards EVs, current recovery plans envisioned
by countries such as Germany and China designate part of their funds to the development of
EV charging infrastructures [17]. Furthermore, companies are equipping their parking spots with
EVSEs to serve employees EVs. For instance, the United States is incentivizing the adoption of
EVSEs at companies’ parking spots via the workplace charging challenge [43]. Therefore, in the
next years, we expect a significant increase in the number of publicly available EVSEs, allowing
users to charge their EV at any time, removing availability concerns.

EVSEs enable the charging process by bringing together multiple technologies. On the one hand,
they allow the user to exchange data with the grid, providing means for authorizations towards a
central entity to negotiate the service and pay the associated fees. On the other hand, they allow
for an exchange of information from the EV to the infrastructure, such that the charging process is
conducted by providing safety towards EV’s components. The former communication process (i.e.,
user to infrastructure) is secured using cryptographic procedures and secure network protocols.
Their use mitigates all the well-known threats to the users’ security and privacy from unprotected
communications. However, the latter communication process (i.e., EV to EVSE) is not secure, as
signals are exchanged without encryption or aggregation techniques. The signals exchanged dur-
ing the charging process can hence be exploited as a side-channel to extract information peculiar
to each EV, allowing hence for their profiling and successive recognition [10]. This represents a
threat to users’ privacy, as the connection of their EV to an EVSE monitored by a malicious user
may lead to tracking their movement as well as information regarding their driving behavior. Since
the majority of publicly available EVSEs are deployed without proper physical protection, they can
be accessed by anyone and hence represent favorable spots for attackers targeting the charging
infrastructure [2]. Therefore, an attacker can easily install devices to collect data regarding the
charging process.

In this article, we propose EVScout2.0, an extension of EVScout [10], where we initially showed
the feasibility of profiling EVs based on the current exchanged during the charging process. In par-
ticular, we extend the proposed framework by developing an enhanced feature extractor, which
allows for higher classification scores than our previous work. We then exploit a novel TS (Time
Series) for feature extraction by combining the current and pilots TSs. We will explain the rea-
soning behind this choice and provide the details on its computation. Furthermore, we consider a
larger real-world dataset, comprising up to 300 TSs of the current and pilot signals exchanged by
each of the 137 considered EVs, for a total of more than 7,500 charging sessions. We perform a thor-
ough evaluation of EVScout2.0, showing its profiling performance considering different training set
sizes, as well as different unbalancing in the training-testing datasets. Compared to the previous
work [10], we provide a more comprehensive analysis of the performance of the attack. In particu-
lar, we first show the performance of the novel feature extractor and investigate the performance
of EVScout2.0 for a varying number of features. We then compare the performance of the different
classifiers that can be exploited by EVScout2.0. We also extend the number of classifiers and provide
an in-depth description of the choice of their hyper-parameters. We then investigate the depen-
dencies of EVScout2.0 on the number of training TSs needed for classifying EVs with sufficient
confidence. We show that the attack is already successful considering seven training examples.
We then investigate the battery degradation over time and its impact on EVScout 2.0 performances.
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Last, we show the superiority of EVScout 2.0, comparing its performance with those in Reference
[10], both on the old and new datasets.

The contribution of this article and its improvements with respect to Reference [10] can hence
be summarized as follows:

• We propose an enhanced feature extraction framework, which allows for better classification
performance compared to Reference [10].
• We propose the use of Delta TS, a novel TS given by the linear combination of the current

and pilot TSs. Delta TS allows for the extraction of more significant features compared to
those in Reference [10].
• We analyze the performance of EVScout2.0 on a large real-world dataset, comprising more

than 7,500 employable current and pilot time series from 137 EVs. Compared to the dataset
in Reference [10], we consider both a larger number of TSs, as well as a larger number of
EVs.
• We perform a thorough evaluation of EVScout2.0, showing its performance over different

training set sizes, as well as its robustness towards different unbalancing amounts in the
training-testing dataset sizes.
• Compared to Reference [10], we analyze the performance of a higher number of classifiers

and provide an in-depth discussion on the choice of their hyper-parameters. We show that
EVScout2.0 is able to profile EVs with precision and recall up to 0.88.
• We investigate the battery degradation over time and show that EVScout2.0 can extract fea-

tures that allow for high classification scores (on average 0.8 F1 score) in time.
• We compare EVScout2.0 with the framework in Reference [10], showing its superiority both

in the old and in the new datasets.

The rest of the article is organized as follows: In Section 2, we review the related works. Then,
in Section 3, we present the considered system and threat model in an EV charging infrastructure.
In Section 4, we describe the features and the steps of EVScout2.0. In Section 5, we describe the
evaluation framework and the new dataset. Then, in Section 6, we show the results achieved by
EVScout2.0, while in Section 7, we propose some insight on additional analysis related to training
set size and battery degradation. In Section 8, we provide a comparison between EVScout2.0 and its
previous version EVScout [10], clearly presenting the advantages of the new approach. We discuss
some countermeasures to avoid profiling in Section 9, and, last, we summarize the results and draw
the conclusions in Section 10.

2 RELATED WORKS

Power consumption can be exploited as a side-channel for different purposes [28]. For instance,
an attacker may recognize a laptop user by measuring the current that the laptop draws from the
wall socket during users’ activity given [15]. The same concept can be exploited for detecting the
user’s presence in a smart home, where raw data can be acquired and analyzed to detect activity
and hence users’ presence [30]. Raw power data also provides information regarding the actions
a user is performing. For instance, by analyzing raw power data exchanged via a USB cable, an
attacker may be able to obtain information regarding the victim’s browsing activities [48]. The
power exchanged during the charging process via USB can also leak more sensitive information,
which an attacker can later exploit. For instance, the power analysis may leak information regard-
ing digits composed on a touchscreen, allowing for the deduction of users’ passwords [16].

Regarding EVSEs, security and privacy research and contributions focus on the negotiation
phase, as it allows the negotiation of the charging service by sharing personal users’ data. This
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includes both communications from the EVSE to the power distributor and from the EV to the
EVSE. In the former communication scenario, the standards J1772 [13] and CHAdeMO [1] are
exploited to regulate the physical standards needed for EV-to-EVSE connections, together with
the signaling required for the charging process. These standards do not employ encryption or
privacy measures on the exchanged information. In the latter case, the standard ISO 15118 [32] is
exploited to create a secure communication link, implying that both EV and EVSE must be able to
encrypt messages. In Reference [4], the authors proved that the charging cable was not shielded
and data was not encrypted, leading to dangerous privacy threats. This weakness was exploited
in Reference [26] to inject a signal into the cable and stop the communication. In Reference [14], the
authors present a relay attack on the ISO15118 charging system. The attack enables an attacker
to charge a vehicle, making a victim pay for it. The overall V2G system has been analyzed in
literature from a CPS (Cyber-Physical System) security point of view, and several threats have
been identified [2, 21]. However, security and privacy analysis should also focus on the charging
phase. In fact, the signals exchanged during the charging process create a time series that can
be analyzed to extract features that lead to the profiling of vehicles [10]. However, an in-depth
analysis of the robustness of these types of attacks is still missing. In particular, the feasibility of
the attacks has been shown for a limited dataset, and the attacker’s requirements in terms of the
number of samples needed for EV profiling have not been discussed yet.

3 SYSTEM AND THREAT MODEL

In this section, we introduce the scenario in which we conceived our experiments. In particular,
in Section 3.1, we recall the EV charging system, which represents our system model, then in
Section 3.2, we present the threat model designed for EVScout2.0.

3.1 EV Charging System

According to the Vehicle-To-Grid (V2G) paradigm [25], the charging infrastructure for EVs is a
network where a central controller (power distributor) distributes power based on EVSEs demand
while accounting for the maximum supported load by the electric grid. We depicted in Figure 1
the typical architecture of a V2G system. EVSEs in the network may be deployed at different sites,
e.g., private customer premises, public stations, or office buildings. Each EV is both physically and
logically connected to the grid via the EVSE, which manages communications between the user
(i.e., the owner of the EV) and the power distributor. For public charging infrastructures and office
stations, multiple EVSEs are connected to the power distributor through a Central Control that
copes with the demand of a large number of connected users [2]. EVSEs are typically equipped
with communication interfaces (wireless or wired) to allow communication with the user and the
grid. Utilizing modules in the EV or smartphone, the user can communicate with the EVSE and, in
turn, with the power supplier.

Current implementations of EVSEs are organized in three levels [21, 45]. Level 1 and 2 use a
five-lead connector based on SAE J1772 standard [42], where three leads are connected to the
grid via relays in the EVSE. The remaining two pins, i.e., pilot and proximity lines, are used for
signaling. The proximity line indicates whether a good physical connection has been established
between the EV and the EVSE, blocking the initiation of the charging process in case devices are
not properly attached and hence preventing damage to both the user and the involved devices. The
pilot line provides a basic communication means between the EV and the EVSE. The combination
of signals collected from all the pins is used to provide the main processing unit of the EVSE
information regarding the charging process, allowing for metering used to assess the charging
session state. If a problem arises at one of the two sides of the charging process, then the EVSE
computer hardware will remove power from the adapter to prevent injuries on both sides. Level 3
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Fig. 1. System and threat model. Multiple EVSEs are connected to the central control, which provides co-

ordination and power distribution among them. A single EV is connected to each EVSE. The attacker has

access to the physical quantities exchanged by multiple EVs during the charging phase.

Fig. 2. Charging profile of a Li-ion battery [41]: We see that, as the SoC increases, the charging mode switches

from constant current to constant voltage. We further notice that the two phases are mutually exclusive.

EVSEs are instead more complex, comprising bigger pins for power delivery and allowing power
line communications via the pilot line.

Typical batteries employed for EVs belong to the class of Li-ion (Lithium-ion) [3, 47]. Current
and voltage values exchanged during the charging process depend on the SoC (State of Charge) of
the EV battery and can be divided into two classes: constant current/constant voltage and constant
power/constant voltage [29]. In this work, we consider the first class, where the charging process
can be further divided into two phases:

• Constant current phase, where the current level is constant while the voltage value increases;
• Constant voltage phase, where voltage is constant whereas current decreases.

The charging process starts with the constant current phase, and this operation mode is kept
until the battery’s SoC is above a certain value. After reaching the SoC switching point, the op-
eration mode switches to constant voltage up to the full charge. Typical SoC switching values lie
between 60% and 80% of the full charge. An example of a charging profile for an EV’s Li-ion bat-
tery is shown in Figure 2. We here remark that constant current and constant voltage phases are
mutually exclusive in time, as this will be exploited by EVScout2.0.
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3.2 Threat Model

We consider two possible threat actors: an external attacker and the charging service provider.
The first scenario considers a general malicious user who wants to target a specific vehicle. In this
case, the attacker can compromise a specific EVSE that the user generally uses (e.g., in workplaces,
public parking lots in industrial areas), reducing the number of EVSEs to compromise to succeed in
the attack. The attacker may be equipped with a small measuring device that can be connected on
one side to the EVSE plug and on the other side to the EV plug. This device measures the exchanged
current at the connection point between the EV and EVSE, and we assume that it is hard to notice
by users. We assume that the device provides information to the attacker via either (i) a wireless
communication module or (ii) storing the values of interest to be later collected by the attacker.
The device used to collect the power traces can be built in different ways. For instance, it can be
composed of an Arduino board1 and a standard power consumption monitoring module to sample
both current absorbed and pilot.2 Furthermore, the device can be battery-powered so as not to
impact the normal charging behavior. Even if the integration of an external device may impact the
absorbed current, we can reasonably assume that this does not affect the profiling performance
significantly, as demonstrated in similar works [10, 15, 16, 48].

The second case involves the charging column provider as a threat actor (i.e., the parking spot
owner with the charging columns). In this case, the attacker has a higher possibility of manip-
ulating the charging columns; therefore, the attack scales better on more vehicles. Indeed, the
V2G infrastructure is exceptionally complex nowadays, and many actors participate in the energy
distribution process (e.g., the energy provider, the energy plan contractor, the charging column
provider, and the parking lot owner) without access to the same data. For instance, the provider
of the charging column does not have access to the user information (data are encrypted), but she
can instead easily access the power traces. Therefore, she can easily track and profile users based
on their power requirements without being detected.

By employing one of the strategies mentioned above, the attacker has access to the TS of the
signals exchanged between the EVSE and the EV during the charging phase. These values are
hence recorded for each pin of the EV charger. In this article, we assume that the attacker trains a
different classifier for each target EV. To accomplish this, a sufficient number of TSs of the target
EV shall be collected. The attack is hence divided into (i) the collection phase, where the attacker
collects data regarding a target EV, and (ii) the exploitation phase, where the attacker exploits the
previously computed features to discriminate between different EVs based on the observed time
series. To collect multiple traces of a single vehicle, the attacker may exploit one or more EVSEs
in a public place with regular customers (e.g., workplaces, public parking lots in industrial areas).
In this way, the probability of a vehicle going there many times, and thus the attacker having
access to more charging traces, is higher. To build a set with sufficient features, we assume that
the attacker collects the TS of the exchanged current values and the TS of the pilot signals. Notice
that, to retrieve this data, the attacker does not need to perform elaborate V2G network intrusion
schemes, as signals are exchanged outside the network. Furthermore, notice that the attacker is
not modifying in any way the charging process. Hence, the system cannot automatically detect
the attacker’s presence via intrusion/anomaly detection techniques.

Our threat model is based on the fact that the majority of publicly available EVSEs are deployed
without proper physical security and hence can be accessed by any malicious actor [2]. In this
case, since there is no access regulation to the EVSEs, the attacker can freely attach the measuring

1https://www.arduino.cc/.
2Example of power consumption monitoring module: http://www.sparkfun.com/datasheets/BreakoutBoards/0712.pdf.
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devices. The attack is further facilitated by the fact that typical users will not modify the charging
system, even though they may notice something unfamiliar. Therefore, the attacker may not only
be represented by the company running the EVSEs network but can also be anyone interested
in obtaining information on users’ consumes and locations. However, we notice that the EVSE
devices can be routinely checked by the staff of the running company.

Figure 1 shows the assumed system and threat model. In detail, multiple EVSEs communicate
with the Central Control, providing coordination information and power distribution. A single EV
is connected to each EVSE. As previously mentioned, the attacker gets access to the time series of
the physical quantities exchanged by multiple EVs during the charging phase and exploits them
for profiling. Note that if the attacker can remotely access the current exchanged in different net-
work nodes, then it can also locate users, leading to user tracking. The knowledge of the physical
signal features associated with each EV (and hence the owning user) can also be exploited for im-
personation attacks. Considering EVSEs, which are automated based on the specific user needs, an
attacker could steal assets from a target user by generating a signal with the same physical features
such that the EVSE recognizes the attacker as the victim. Scenarios that may harm the target user
include billing and misbehaving users’ exclusion from the system. Therefore, the motivation be-
hind the attack can be multiple. As an illustrative example, consider advertising: The attacker has
both information on a certain user’s typical movements and the amount of energy s/he consumes
regularly. This information can be sold to EVSE owners, which will target their advertisement to
the profiled user according to its demand. Notice that, although a single classifier is trained for
each EV, the attacker collects information regarding multiple EVs, such that more than a single
classifier can be implemented with the gathered data. Therefore, the attacker can also sell infor-
mation about collective use of the EVSE charging stations by EVs to EVSE companies. Although
profiling can be implemented using cameras, this would not allow collecting energy traces, there-
fore losing some of the information available with the proposed attack. Such information can be
obtained utilizing EVScout2.0, which may be used as an alternative or a complementary solution to
cameras. The possibility of tracking a user gives a further threat. In fact, thanks to EVScout2.0, an
attacker can detect the presence of a target user in a certain place and time based on the fact that
his/her EV is connected to a particular EVSE. We stress that the complexity of the overall charging
infrastructure currently imposes several challenges that will be addressed in future implementa-
tions. Therefore, it is not possible to predict which actors will in the future be able to access power
traces and use them for malicious purposes. Therefore, we aim to warn users and developers about
the threat imposed by the cleartext exchange of power traces.

4 EVSCOUT2.0

In this section, we describe the EVScout2.0 analysis methodology. We propose a high-level descrip-
tion of the attack configuration in Section 4.1. Then, we describe the preprocessing we apply to
the dataset. Starting from Section 4.2, we present the concept of tails and outline the method we
designed to extract them automatically. To improve the performance with respect to the solution
in Reference [10], we propose to exploit Delta TS, i.e., the TS given by the combination of the
current and pilot TSs. In Section 4.3, we present Delta TS, providing both the motivation behind
our choice and the means to compute it. Last, in Section 4.4, we describe the novel and automatic
feature extraction technique we employ in EVScout2.0.

4.1 Attack Description

As previously stated, in the context of EVs charging infrastructures, users’ data are authenticated
and secured. However, physical signals are generally not supposed to implement security measures
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Fig. 3. Block diagram of EVScout2.0’s steps.

and, therefore, can be easily exploited by malicious users. Since the exchanged current during the
charging phase is a user’s generated data, it comprises features and recurrent behaviors useful for
profiling attacks. EVScout2.0 identifies and extracts those physical features that are representative
of every single EV, such that we can assert with sufficient confidence if and when a specific user
is connected to the charging grid.

Figure 3 shows the block diagram of EVScout2.0’s steps. EVScout2.0 starts with data collection.
To profile EVs the attacker must collect multiple charging sessions for each target EV. We will
discuss this requirement in Section 7.1, assessing the number of training examples the attacker
needs to collect to profile an EV with sufficient confidence. Once collected the charging TSs (i.e.,
the dataset), EVScout2.0 automatically computes the features that characterize each EV. To this aim,
in the following, we propose a strategy to exploit the behavior of batteries during the charging
process. In particular, as proposed in EVScout [10], assuming that the attacker has access only to
the ampere-based electrical quantities, we exploit the current behavior during the constant voltage
phase. Leveraging the nomenclature in Reference [39], we name the current TS during the constant
voltage phase as tail. In Section 4.2, we describe how EVScout2.0 extracts the tails.

Notice that the choice of exploiting tails is due to the assumption that the attacker has only
access to the ampere-based TS. If the attacker has access to voltage values, then the correspond-
ing features can not be extracted from the tail, as the tail corresponds to the constant voltage
phase. Therefore, features extracted from voltage values during constant voltage may be under-
representative of the battery’s behavior. If the attacker has access to both current and voltage TS,
then current features can be extracted from tails, whereas voltage features can be extracted during
the constant current phase.

By noticing that each battery follows the current limits imposed by the pilot differently, we
generate a further TS to be used to extract more features. Together with the tail, in EVScout2.0,
we exploit the Delta TS, i.e., the TS given by the punctual difference between the current TS and
the pilot TS during the constant current phase. Delta TS hence includes all the data from the
beginning of the TS up to the beginning of the tail. More precisely, since the first few seconds of
the charging are generally noisy, we start our delta computation after the first few samples. We
believe that this derived TS uniquely characterizes the behavior of each specific EV, as we will
explain in Section 4.3.
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Fig. 4. Normal current trace and filtered current trace with respect to the pilot during a sample charge. The

delta is also plotted multiplied by a factor of 10 to increase understandability.

4.2 Tail Identification

Charging sessions are not necessarily comprehensive of the constant voltage phase, as a user may
need to leave before the full charge is reached. In Reference [39], the authors presented a frame-
work to cluster similar charging behavior based on the charging tail. We exploit this portion of the
TS to perform more detailed profiling. Since EVScout2.0 exploits tails during the constant voltage
phase, we adopt the algorithm we proposed in Reference [10] to identify whether the considered
session includes a constant voltage phase. The presence of a tail implies that the session termi-
nates with full SoC and eventually zero-current exchanged between EV and EVSE. Tails, however,
can not be uniquely identified by the presence of zeros in the current TS, as this may be due to
idle phases during the power scheduling process at the grid side. Furthermore, scheduling may
cause shot noise in the TS also after full SoC, leading to spikes in the TS. Therefore, we designed
a suitable tail reconnaissance algorithm.

To mitigate the effects of scheduling and highlight the trends in the considered TS, we propose
applying a suitable filter. In particular, we filter both the current TS and the pilot TS with a length
Navg moving average filter. Given time instant t and denoting the electric current value at time t
as c (t ), the output value y (t ) of the moving average filter at time t is given by

y (t ) =
1

Navg

Navg−1∑
m=0

c (t −m). (1)

The effects of the moving average filter are shown in Figure 4. We see that, with respect to the non-
filtered current TS in Figure 4(a), the current TS in Figure 4(b) has a smoother behavior as the filter
removes most of the noise and scheduling artifacts. Notice that different filter implementations can
be considered, e.g., low pass filter. However, a low pass filter requires a more accurate design and
leads to ringing effects, which may be misleading for trend and, hence, tail identification.

If the filter has a sufficient length, then its effects include spikes removal. This eases the identifi-
cation of tails in the TS, as we can rely on the presence of steady zero values when the full charge
is reached. In detail, if the current TS assumes zero values from tstart up to its end, then we can
assume that full SoC has been reached. Tails are characterized by a descending trend in the TS, as
shown from the current behavior during the constant voltage phase in Figure 2 and verified in
Figure 4. By forward analysis of the current TS, it is difficult to identify the time instant correspond-
ing to the beginning of the tail, as this would imply the overall TS analysis. Therefore, we propose
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to proceed backward from the point where full SoC is obtained. Proceeding from tstart backward, we
identify the tail by accounting for the number of samples in the current TS reporting an ascending
trend. Notice that, even though scheduling and noise could affect the trend of the TS, its effects are
mitigated by the moving average filter (see Figure 4(b)). A perfectly backward-ascending trend is
given by a negative difference between the values at time t and t−1, i.e.,y (t )−y (t−1) < 0. However,
we notice that tails do not always exhibit a perfectly backward-ascending trend. In fact, if the non-
filtered TS is affected by heavy noise, then its effects are still visible after filtering. Therefore, we re-
lax the concept of perfect backward-ascending trend including samples for whichy (t )−y (t−1) ≤ ε ,
with ε being a small positive value. Furthermore, we also allow for short descending trends by ac-
counting for Tmax consecutive segments for which y (t ) − y (t − 1) > ε . If this is the case for Tmax

consecutive samples, then the trend is considered fully descending and hence discarded.
Based on the considerations mentioned above, the steps of the tail extraction algorithm are

shown in Algorithm 1. We denote as I the set of EV indexes. Notice that each current TS is as-
sociated with a unique pilot TS. We denote as C (i ) and P (i ) the sets of the current and pilot TS
associated with ID i ∈ I, respectively. We assume that the two sets are ordered such that the
current and pilot TS associated with a certain charging session are associated with the same index
in the two sets. We define the setW (i ) = {C (i ),P (i )}, whose elements (c,p) are the couples of
current and pilot time series, respectively, taken from sets C (i ) and P (i ). For each TS c ∈ C (i ),
we calculate the filtered current and pilot TS, respectively, denoted as c̃ and p̃ by applying the
filtering function (1). We then search for the time instant tstart starting from which c̃ is composed
only by zero values. If tstart is found, then the current time series might contain a tail, and we
hence proceed to identify the number of samples of the tail. Given our definition of backward as-
cending trend, we compute the number of samples for which the filtered time series is such that
c̃ (t ) − c̃ (t − 1) ≤ ε . As short descending trends are also allowed, we account for the number n of
consecutive descending samples. However, if this trend is persistent, then we should discard these
samples. Therefore, we set a threshold value Tmax for the number of descending samples, after
which, we stop the counter. Instead, if an ascending segment is found after a descending samples
series, then the counter is reset. Given the number S of tail’s samples, the tail c̃ (tstart, s ) is obtained
from the filtered current TS, starting from tstart − s up to tstart. The tail p̃ (tstart, s ) associated to the
pilot TS is analogously obtained, starting from tstart − s up to tstart. Both current and pilot TS are
eventually added, respectively, to the set Tc (i ) and Tp (i ) of current and pilot TS tails associated
with EV ID i .

4.3 Delta TS Computation

Aside from current tails, we compute another TS to be used for extracting features for the classi-
fiers. Since different batteries’ charging sessions have different charging parameters, the maximum
current that can be absorbed is variable and characterizes the specific vehicle [10]. Furthermore,
pushed by advanced charging algorithms [27], during some periods, the EV can be forced into
charging at a lower current, e.g., to deal with peak leveling during peak hours. However, as vis-
ible in Figure 4, generally, the battery does not charge at the exact amount of energy expected
from the pilot signal. Furthermore, the absorbed current often exhibits small variations around
the maximum current deliverable by the charging column. It is particularly true when considering
the behavior of the two TSs is the time preceding the tail. To capture these changes, we compute
Delta TS, i.e., the TS given by the combination of the current TS and the control pilot TS during
the constant current phase (i.e., the period preceding the tail).

To compute Delta TS, we calculate the difference between the current and pilot TSs at each time
instant during the constant current phase. While the pilot TS generally is not affected by noise, the
current TS instead exhibits some tiny positive and negative spikes, as shown in Figure 4(a). While
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the tails generally follow a decreasing trend, the values assumed by the TSs before the tail (i.e., the
ones used to compute the Delta TS) are generally more constant. Since the moving median filter
provides better performance in removing noise and spikes when the data in the neighborhood of
the peak are quite constant [33], we use it instead of the moving average filter used in Section 4.2.

Given time instant t , we denote the electric current value at t as c (t ) and the correspondent pilot
value as p (t ). The resulting point at time t in the Delta TS can be expressed as:

z (t ) = p (t ) −median

(
c

[
t −

⌊
Navg

2

⌋
, t +

⌈
Navg

2

⌉])
, (2)

where c[a,b] represents the array of values of the TS c from t = a to t = b, Navg is the filter length,
and median(x ) is the median value of array x (i.e., the middle value separating the greater and
lower halves of x ).

4.4 Improved Feature Extraction

Segmentation represents a classical approach for feature extraction in TSs [12, 15, 18]. Unfortu-
nately, segmentation is not a viable solution, since the TSs we consider here are generally short
with no stationary components. Therefore, we do not further process tails before extracting fea-
tures. In our previous work [10], we computed the mean, mode, median, max value, standard
deviation, auto-correlation, length of the tail, and the slope of the linear approximation for each
tail. Furthermore, we used as a feature the total kW delivered and the overall session time dura-
tion, leading to a total of 18 features considering both pilot and current TSs independently. Instead,
in this work, we adopted a more sophisticated feature extraction process that can extract several
more features.

We analyze widely used feature extraction tools that can automatically extract features from
a given TS [5, 18, 31]. We use Time Series Feature Extraction based on Scalable Hypothesis tests
(tsfresh) [11], which is available as a Python package easily integrable with other tools such
as scikit-learn [34]. tsfresh exploits the power of 63 TSs characterization methods to extract
hundreds of features from a TS. Moreover, it contains functions to slightly reduce the number of
features to remove the less meaningful ones. We use tsfresh to extract features from the current
tails and the delta current-pilot TSs. It is worth mentioning that, with respect to the previous
work [10], we decided not to employ features extracted from the tails of the control pilot TS, since
the pilot tail is generally based on the optimization algorithm [27] and not on the behavior of the
battery. For example, even if the battery has reached its maximum SoC, the control pilot could
remain at a high value if the grid has energy available. In the same way, if many vehicles start
requesting energy, then the control pilot will reduce its value independently of the SoC of our
target EV. Furthermore, we removed the needs for the duration of the charge and the total energy
absorbed by the battery (kW), since they can depend on the user behavior and the SoC of the
battery at the beginning of the charging process.

Since tsfresh can generate around 800 features for each TS both from the time and frequency
domains. We removed those that are not relevant to our classification problem. To reduce the
number of features, from now on denoted as NoF , we select the most significant ones by using
SelectKBest of scikit-learn [34] with the chi2 function, which is suitable for classification pur-
poses. Since the chi-squared measures the dependence between stochastic variables, we can high-
light and select only the features that offer more information for the classification. We employ this
strategy with respect to other more complex methods such as Random Forest feature reduction,
since SelectKBest can achieve approximately the same results with lower computational com-
plexity. As expected, due to the high variance in the charging tail, the most meaningful features
are related to the tail TS. For example, high feature importance score is assigned to the values that
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ALGORITHM 1: Tail extraction algorithm.

Data:W , I, Cmax, Tmax, Navg

Result: Tc , Tp
1 for i ∈ I do

2 for (c,p) ∈ W (i ) do

/* filter the current and pilot time series via moving average */

3 compute c̃ and p̃ via (1);

/* find the charging ending instant */

4 compute tstart;

/* if charging reaches an end */

5 if tstart found then

6 n = 0, s = 0;

/* detect length of backward ascending trend */

7 for t = tstart, tstart − 1, . . . , 1 do

8 if c̃ (t ) − c̃ (t − 1) > ε then

/* increase counter of backward-ascending samples */

9 n = n + 1;

10 else

/* reinitialize counter after descending trend */

11 n = 0;

12 s = s + 1;

13 end

14 if n = Tmax then

/* maximum length reached */

15 exit loop;

16 end

17 end

/* add the detected time series to the sets */

18 Tc (i ) = Tc (i ) ∪ c̃ (tstart, s );

19 Tp (i ) = Tp (i ) ∪ p̃ (tstart, s );

20 else

21 end

/* move to the next time series */

22 go to next c;

23 end

24 end

are more than r times sigma distant from the mean of x , with different r ∈ [3, 5, 6, 7], indicating
the number of outliers that the moving average filtering has not eliminated. Other significant im-
portant features include the number of peaks, the standard deviation, the quantiles, and the c3
statistics [37] (a coefficient used to measure non-linearity). The features computed from the delta
TS are instead less relevant, but the standard deviation has a significant importance score. More
details on the features extracted can be seen in the tsfresh documentation [11].

5 EVALUATION FRAMEWORK DESCRIPTION

In the following, we present the experiments we use to test EVScout2.0. In particular, in Sections 5.1
and 5.2, we describe, respectively, the ACN Infrastructure and Dataset on which we based our
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analysis. We then explain how the new version of the dataset differs from the one in the previous
work. Then, in Section 5.3, we outline the machine learning classifiers we use to profile EVs.

5.1 The ACN Infrastructure and Dataset

To test EVScout2.0, we exploit the ACN (Adaptive Charging Network) proposed in Reference
[27]. It consists of level two EVSEs connected with a central controller that regulates power ex-
changes in the grid. Employing an online optimization framework, the ACN allows adapting the
power exchanged in the grid, satisfying users’ power demand while coping with the grid’s capacity
limits. The dataset comprises 50kW DC charging sessions from different ACNs sites, each report-
ing user-specific measurements such as the arrival and departure time, the kW/h delivered, current
and pilot TSs collected between the EV connection and disconnection time. Notice that, although
the user may have planned for a full recharge during the selected period, this may not be reflected
in the TS. In fact, due to the variable number of connected EVs, the upper power limit of the grid,
and the premature departure of the user, the battery may not be fully charged at disconnection
time. Notice also that, in the ACN dataset, not all TS are sampled with the same period. However,
we avoid upsampling with filtering, because it can introduce statistical features that are not repre-
sentative of the analyzed battery. Each user in the dataset is identified by a unique ID associated
with the owned EV. We specifically focused on the biggest site, Caltech, which contains charging
sessions collected from 54 different EVSEs.

5.2 New Dataset

Like in the previous work [10], we decided to use the ACN dataset containing time series sampled
with an average period of 3.8 s. However, since the dataset was recently enlarged, we expanded
the number of EVs considered from 22 to 187. To generate the dataset, we selected all the avail-
able EVs up to June 18, 2021, from the caltech site (one of the three locations available in the
dataset). We also excluded by default EVs without charges and charges without any EV assigned
(i.e., anonymous charges). To download the dataset, we employ the Python APIs provided by the
ACN Dataset [27]. The number of charges associated with each EV ranges from one to over 300.
However, not all the charges are performed up to the full SoC and thus, not always a tail is avail-
able. We, therefore, remove these TSs and the corresponding EVs, because our method is based on
the presence of the tails to compute features on both current and delta. Furthermore, we consider
all the EVs with more than eight employable charging processes associated. We made this choice
to be able to effectively use cross-validation even for those EVs with a small number of charges.
After this cleanup, 137 EVs remain in the dataset, resulting in a dataset more than six times bigger
than the one used to test EVScout in Reference [10].

5.3 Classification Algorithms Comparison

The first step of EVScout2.0 is to build a suitable dataset to be exploited for profiling, as explained
in Section 5.2. It is worth mentioning that the dataset does not provide any information regarding
the brand and the model of the EVs. Since the energy behavior highly depends on the chemical
reactions of the single battery, we believe that EVScout2.0 could be able to distinguish EVs of the
same model. Furthermore, the batteries employed by the analyzed EVs all belong to the same class,
i.e., constant current/constant voltage. However, since both classes discussed in Section 3 show
particular behaviors in time, we believe that our attack could be easily extended to the constant
power/constant voltage class. The effectiveness of EVScout2.0 in these cases will be investigated
in future works.

For each session, EVScout2.0 first identifies whether a tail is present and discards all the other
sessions. Then it builds a feature vector for each tail, associating it with the ID of its corresponding
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EV. We test EVScout2.0 across all EVs in the dataset by averaging the performance obtained with
every single classifier. In particular, we implement a binary classifier (One-vs.-Rest strategy) for
each EV, and we associate each feature vector of the target EV with label 1, otherwise with label 0
all the other traces (i.e., non-target vehicles). The overall performance of the obtained classifiers is
averaged considering 100 randomly created training and testing sets, except RF (Random Forest)

and ADA (ADA Boost) classifiers for which, for timing reasons, we consider 25 iterations. The
overall performances of EVScout2.0 are obtained by averaging the results obtained for each ID’s
classifier to mitigate too high or low results caused by a particular vehicle.

Let us denote as Q the ratio between the number of feature vectors associated with the target
EV and the number of feature vectors associated with other EVs. Hence, Q measures the amount
of unbalancing in the considered dataset. To further assess the performance of EVScout2.0, each
classifier is tested for multipleQ values. Regardless of the valueQ , the 80% of the dataset has been
used for training and the remaining 20% for testing unless otherwise specified. As the number of
feature vectors of a single EV is smaller than the overall number of feature vectors, when con-
sidering small Q values, the set of feature vectors associated with other EVs is randomly created
from the overall set. Another value that can lead to different results is the number of features NoF
employed in the classification. Since our feature extraction strategy returns about 1,500 features,
using them all can lead to overfitting. We show in the next sections how different NoF values affect
the classification performance and provide a justification for choosing a suitable NoF value that
provides a good threshold to balance classification performance and overfitting.

6 EVSCOUT2.0 PERFORMANCE: VEHICLE PROFILING

We first assess the performance of EVScout2.0 in terms of profiling every vehicle based on its
charging behavior. To this aim, we implement and compare common machine learning algorithms
for classification. We describe in Section 6.1 the classifiers, and we provide a discussion on their
hyper-parameters setting. Then, in Section 6.2, we present the results obtained via EVScout2.0 with
the different classifiers.

6.1 Classification Algorithms

Once features have been identified and selected, EVScout2.0 feeds them to a binary machine learn-
ing classifier. The profiling task can be formulated as a supervised classification problem, where a
two-class classifier is trained with both features from the target EV and features from all other EVs.
In particular, we assume that a classifier whose input is the features vector from the target EV shall
return output value 1, otherwise it shall return output value 0. In the literature, this approach is
also called One-vs.-Rest, and more precisely, it aims at creating a specific model for a single device
by using the other class, composed of other different devices, to create a decision bound around
the class under consideration. If, on the one hand, this approach requires a different model for each
class, on the other hand, it allows focusing on a single class, leading to a more robust model for
the specific class.

We evaluate our pipeline by using and comparing six different common machine learning mod-
els that are often used in the field [7, 36], namely:

• SVM (Support Vector Machine) classifier [40];
• kNN (k-Nearest Neighbors) classifier [22];
• DT (Decision Tree) classifier [9];
• LR (Logistic Regression) classifier [23]
• RF classifier [8];
• ADA classifier [20].
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Table 1. Grid Search Cross-validation Parameters for Each

Model

Model Parameter Values

SVM
kernel [“rbf”]
regularization (c) [1, 10, 102, 103]
gamma (γ ) [10−4, 10−3]

kNN
n_neighbors [1, . . . , 10]
weights [“uniform,” “distance”]
metric [“euclidean,” “manhattan”]

DT
criterion [“gini,” “entropy”]
max_depth [8, 10, 14, 30, 70, 110]

LR
max_iter [5,000]
regularization (c) [10−2, 1, 102]

RF
n_estimators [50, 200, 1,000]
max_depth [10, 100,None]

ADA n_estimators [10, 100, 500, 1,000, 5,000]

Hyper-parameters optimization is obtained via grid search with cross-validation to fine-tune our
models and extract the best results. Table 1 indicates the different parameters employed in the grid
search for each model. The training set is suitably divided into training and validation sets, which
we test on a grid of possible hyper-parameters. Notice that all six classifiers are standard machine
learning algorithms without deep architectures. Although deep learning automates the feature
extraction process, a large number of samples shall be used to train deep architectures effectively.
The use of non-deep structures allows us to show the feasibility of EVScout2.0 over our currently
available dataset and, simultaneously, control the feature relations during the classification process.
The same motivation resides behind the choice of binary classifiers. In fact, a single multi-class
classifier can be designed to have a single class for each EV. However, multi-class classifiers require
a larger dataset for training purposes than binary classifiers. Although we consider a larger dataset
than our previous work [10], it is not big enough to provide interesting results with deep models
or a multi-class scenario.

6.2 Profiling Results

We exploit the implementation of the classification algorithms employing the scikit-learn li-
brary [34]. Results are assessed in terms of precision P , recall R, and F1. We present numerical
results assessing the validity of EVScout2.0 as a function of Q , the amount of unbalancing in the
dataset. This measure provides evidence of how the model is resistant in constrained scenarios
where the attacker has few charging traces available for the target vehicle. Since traditional per-
formance measures such as F1 may be misleading when considering highly unbalanced datasets,
the geometric mean (G-Mean) between recall and specificity has been proposed as a suitable
performance metric [19]. Therefore, we consider G-Mean an accurate indicator of the validity of
EVScout2.0 for large Q values. By denoting as TP , TN , FP , and FN , respectively, the number of
true positive, true negative, false-positive, and false-negative outcomes, we can express the recall

as R = T P
T P+F N

, and specificity as α = T N
F P+T N

. G-Mean is hence obtained as G-Mean =
√
αR. We

recall that we present each score as the average over different vehicle-specific trained models to
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Fig. 5. F1 score of kNN classifier with different numbers of features NoF s.

obtain more robust scores and avoid biases due to specific vehicles with a highly diverse charging
profile.

Since the tail extraction process is automated, the number of extracted tails also depends on
the parameter values. Based on our previous work [10], we set Navд (i.e., the size of the moving
average filter) to 25, which provides the best value in terms of classification scores. A smaller
filter length would fail to remove noise on the TSs, while a bigger one would filter out important
data characteristics. We used the same value for the median filter to maintain coherence in the
TSs, since, albeit, with the necessary differences, the two filters are quite similar. Notice that the
filtering process aims to improve tail identification and classification performance. Therefore, the
optimal filter length is obtained by a trial-and-error process instead of selecting a length based
on, e.g., correlation analysis.

We employ the classifiers provided by the scikit-learn Python library [34]. For each model, we
perform a GridSearchCV to tune the model using grid search with cross-validation. In the follow-
ing, we present an analysis of the results with respect to different parameters and values.

6.2.1 Number of Features NoF. First, we analyze the scores based on the number of features
NoF maintained after the feature extraction phase. In Figure 5, we plot the F1 scores for different
ratios Q using the same model (kNN) but varying the numbers of features NoF from 10 to 200.
We can see a significant increase in the score going from 10 to 25 features, especially for higher
ratiosQ . From 100 features up, the increase is instead negligible, meaning that the features already
capture almost all the entropy available. For this reason, we selected NoF = 100 for the other
experiments in this article unless otherwise specified.

6.2.2 Unbalance of the Dataset Q. To understand how our models deal with the unbalance of
the dataset (i.e., the ratio between the number of feature vectors associated with the target EV
and the number of feature vectors associated with other EVs), we test all the six models against
different values of Q . We test Q values ranging from 1 (i.e., the same number of feature vectors
for the target and the other EVs) to 5 (i.e., five times more features vectors not related to the
target EV). We crafted the non-target class in the training set to obtain more robust scores by
randomly sampling the charging traces among all the non-target vehicles. Furthermore, to make
the classification problem more “open-world,” we inserted in the test set, as non-target class, traces
of vehicles without occurrence in the training set.
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Figure 6 shows the results obtained by EVScout2.0 for different Q values. It is possible to notice
how all the scores decrease with Q for all six models. As the number of considered EVs increases
with Q , the chance of two users having the same EV model or having EVs with similar charging
profiles increases. This is reflected in a worsening of classifiers’ performance. With no unbalancing
(i.e., Q = 1), we reach the highest precision of 0.88 with the RF classifier. However, almost all the
classifiers reached at least 0.86 in the recall, except for DT, which has lower performances almost
for every indicator. We notice that the RF classifier is the most resistant to changes in Q if we
look at the precision, while LR offers the best recall scores. If we look at both scores, even if the
absolute values are generally lower, then kNN and ADA seem to be the most resistant to higherQ .
Furthermore, we can observe that for the maximum Q = 5, precision and recall are, respectively,
0.77 (with RF) and 0.71 (with LR), meaning that EVs can still be profiled with sufficient confidence.

As for the other scores, also F1 degrades for increasing values ofQ for all the models. We can see
that RF is the best one for almost all the ratiosQ , while for the highest two (i.e.,Q = 4.5 andQ = 5)
ADA performed slightly better. However, this is not the case regarding G-Mean, confirming its
validity for unbalanced datasets. In particular, ADA presents a large variance in terms of G-Mean,
a sign that is not a suitable algorithm for highly unbalanced datasets. Other algorithms, such as
RF, kNN, and LR, are instead able to maintain high values of G-Mean for every value of Q . This
shows that profiling can be achieved with good results irrespective of the amount of unbalancing
in the dataset, i.e., a single user can still be profiled based on its charging profile also in largely
populated networks.

All these considerations must be considered when designing EVScout2.0. The best algorithm for
each case can be selected if the dataset distribution is known. In particular, RF is advisable for
perfectly balanced datasets, LR for highly unbalanced datasets. Instead, if the dataset is unknown
and a resilient model is needed, then kNN can be a good choice. In fact, we employed kNN in many
experiments from now on, also thanks to its fast training time with respect to other models such
as RF or ADA.

7 EVSCOUT2.0 PERFORMANCE: ADDITIONAL PERFORMANCE ANALYSIS

In addition to the classification-based analyses, we included additional scenarios based on the
training set characteristics. Since the data conditions may be different in a real-world scenario,
we propose an analysis considering different data properties in the following. In particular, in
Section 7.1, we examine different training set size values to assess the minimum number of charges
needed to obtain sufficiently high classification scores. In fact, a large number of labeled traces in a
real-world attack may be challenging to obtain. In Section 7.2, we investigate if and how much the
Li-ion battery’s degradation impacts the performance of EVScout2.0. This analysis can be useful to
understand how a model can still be precise when dealing with natural phenomena like physical
battery degradation.

7.1 Training Size Variation

In a real-world scenario, an attacker may be limited by the number of labeled charges s/he can get
for a target vehicle. For instance, the attacker may not want to leave its malicious device in the
field too much to reduce the possibility of being detected. To simulate this scenario, we analyze
the performance of EVScout2.0 while varying the training set size. We avoid using as target EVs
with less than 70 charges with tails, while to create the group with the others EVs, we employed
the whole dataset. As a testing set, we always use the last 20% of the available charges. For the
training set, we set fixed values from the 80% to the 10% of the min number of charges for each EV
(i.e., 70). In other words, the training set size ranges from 7 to 56 feature vectors for each EV, with
steps of 7 charges.
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Fig. 6. Performance of EVScout2.0 for a different amount of unbalancing in the dataset. Results are shown for

the different classifier algorithms and NoF = 100. We see that good classification performance are obtained

for all classifiers. As Q increases, some classifiers are more robust than others to increasing unbalancing.

Results on G-Mean show that profiling can also be achieved in largely populated networks.

In Figure 7(a), we can see how the F1 decreases while decreasing the training set size. However,
we can appreciate a significant fall only for the smallest values of the training set, while the increase
is less relevant for training set sizes bigger than 14. Above 42 charges, the performance increase
is almost negligible, especially considering the smaller Q ratios. We can also look at the absolute
values of the F1. It is greater than 0.69 for the most unbalanced dataset when using 14 feature
vectors, showing discrete classification performance even with small training sets. By considering
the total number of vehicles per training set size and the imbalance ratio, we can compute the
number of vehicles of the target class in the different scenarios. In particular, we can notice that
with 7 charges (i.e., the training set size 14 if Q = 1, training set size 21 if Q = 3, and training set
size 35 if Q = 5), we can obtain an F1 Score of at least 75%. With only 7 charges, we can achieve a
good classification precision for the target vehicle.

Furthermore, we also analyzed the impact of both training set reduction and feature reduction.
In Figure 7(b), we see the different behavior of the F1 score while varying the number of features
and the training set size (we show the data only for Q = 1 for clarity). As expected, there is a
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Fig. 7. F1 scores of kNN classifier while reducing the training set size.

clear drop in the performances for the lower training set sizes. However, this can be partially
compensated by employing a bigger number of features, up to 100. Over this threshold, the gain
is negligible, coherently with what is presented in Section 6.2 and Figure 5.

7.2 Battery Degradation Performance

The degradation of a Li-ion battery used in an EV is widely discussed in literature [35]. During
a battery life, many aspects can adversely affect its performance depending on the number of
charge cycles, aging, operating, and storing conditions. Degradation on EV batteries can lead to a
shorter traveling distance and a reduced battery’s available power output [6]. Generally, a battery
is considered at the end of its life when it has already lost 20% of its initial capacity. Modern Li-ion
batteries should have a five to ten-year calendar life, depending on the materials and how they are
managed. They should be able to supply between 1,000 and 2,000 cycles of charge. However, many
behaviors, such as keeping the battery at a high SoC or high temperature, or often employing fast
chargers, can reduce even more the lifetime of the battery [6, 44].

Being aware of this problem, we investigate if the battery degradation affects our profiling model.
Since the charge profile of an EV will always be different due to the variation of the physical
properties of the battery, we analyzed how the extracted features degrade the performance of
EVScout2.0 in time. To test how our model behaves in this context, we selected the 10 EVs with the
higher number of charges (i.e., more than 150 charges for each EV) spanning about two years. We
train the kNN classifier in the first part of the data, and we then test it over multiple consecutive
test set batches. In particular, the training set accounts for the TS measured in a specific period and
represents the baseline to measure the successive battery degradation. Each testing set is given by
batches of Z chronologically consecutive TSs, with Z = 5% of the total available testing data. In
other words, we considered as each test set a sliding time window of consecutive TSs. Initially, we
train employing only the first 30% of the data for each EV. These results are shown in Figure 8(a),
where it is possible to see a small difference in scores while shifting the testing set. However, we
cannot blame the physical battery degradation for these results for a series of motivations. First,
the reduction is not important in absolute terms (i.e., less than 0.1 for Q = 1) and can be due to
different behaviors of the users in different periods (e.g., detaching the EV before full SoC). Second,
it is not the monotonous decrease that we would have expected. Instead, the scores seem not to
follow any pattern, showing good classification results also in the last steps (i.e., testing set given
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Fig. 8. F1 score for different ratios while varying the start of the testing set. Each value in the horizontal

axes represents the score on a testing set composed of the 5% of the data starting from the point forward.

Dashed horizontal lines represent the mean of the F1 for each ratio.

by more recent TSs). Third, the small size of the training set employed can be a partial motivation
for the random behavior of the scores.

To remove the training set size as a variable to create strange behavior in the results, we perform
a second training using the 60% of the data. By doing so, we obtain a chart with fewer points, as
shown in Figure 8(b). In this case, scores are almost constants with tiny variations that are expected
in the context.

This demonstrates how EVScout2.0 can perform well, also considering a time distance of almost
two years between the training and the testing data. Although not affected by the small battery
degradation that could happen in this time frame, it could still be affected by unusual and un-
predictable behaviors of the EVs owners or by the ACN scheduling algorithm, especially when
considering highly unbalanced datasets and a small training set. Furthermore, this experiment can
be seen as a remark on the need for a big training set as presented in Section 7.1. We will provide
more analysis on the degradation in future work, considering datasets that span more than two
years.

8 EVSCOUT2.0 PERFORMANCE: COMPARISON WITH EVSCOUT

In our previous work [10], we performed experiments similar to those discussed in previous sec-
tions but employing a different pipeline, a different feature extraction process, and a smaller dataset
composed of only 22 EVs. Since it was one of the first works on the privacy of the EV charging
systems, we use the results of Reference [10] as a comparison baseline. In particular, we propose
two different comparisons: one using the previous EVScout on the new and extended dataset and
one using the new EVScout2.0 on the small dataset employed in Reference [10]. It is worth men-
tioning that we employed the exact dataset used in Reference [10] and not simply the same EVs
updated with the new charges.

8.1 EVScout on the New Dataset

We tested EVScout [10] in our new dataset. To generate results comparable with those presented in
this article for EVScout2.0, we employed the same dataset with 137 valid EVs, even if EV with less
than eight charges could also be used in EVScout. We performed the same pre-processing phases
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Fig. 9. F1 values of the comparison with the previous work [10].

and assessed the performance for Navд = 25. Results are shown in Figure 9(a) for different values
of Q . We can see a clear dominance of EVScout2.0 with respect to its previous version in the new
dataset composed by 137 EVs. The difference in the classification performance ranges from about
0.15 for Q = 5 to more than 0.20 for Q = 1. We remark that the different charging traces (also for
the same vehicle) belong from different EVSEs in the same site. Therefore, the results confirm that
the models implemented are resistant to multiple EVSEs and that different charging stations do
not significantly impact the charging behavior.

8.2 EVScout2.0 on the Previous Dataset

Furthermore, we test our new algorithm EVScout2.0 on the same dataset employed for the testing
of EVScout. Since EVScout2.0 needs at least eight charging sessions comprising tails for each EV,
we have to discard 4 EVs, resulting in a total of 18 EVs. We show the results of this experiment in
Figure 9(b). Even if the enhancement is less pronounced with respect to the new dataset scenario,
we can see a clear improvement in the performance of EVScout2.0 with respect to its previous
version, especially considering high unbalancing Q .

9 POSSIBLE COUNTERMEASURES

To deal with information leakage from smart meters Reference [24] proposes to obfuscate the com-
munication between user and supplier through rechargeable batteries. This solution is effective in
modifying the demand-response correlation in the measured data. This approach can be leveraged
to mitigate the effects of EVScout2.0, where the EV’s battery drains current from a secondary bat-
tery that communicates with the EVSE, masquerading the original battery’s tail behavior. However,
as the number of involved batteries doubles, this approach incurs a higher implementation cost
at both EV and EVSE sides. Furthermore, the attacker may be able to extract features from the
secondary battery and hence still be able to perform profiling. A similar concept is exploited in
Reference [38], where noise is added to smart meters data via an adversarial learning framework.
This idea can be exploited to mitigate the effects of EVScout2.0 by adding a suitable amount of
noise to the current required by the EV’s battery during the tail phase. However, this would imply
redesigning how EVSEs manage the current required by EVs, as the added noise may mislead both
the attacker and the EVSE. The risk is, therefore, that the recharging process’s efficiency drops.
In Reference [16], the authors successfully applied a low-pass filter to remove the information
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leakage due to the high-frequency components from the signal. However, the work targets mobile
devices, which are very different from vehicles, with tiny batteries and different charging patterns.
Other non-technical countermeasures are also possible. For instance, EV owners can be educated
to check the presence of suspicious devices attached to the EVSE. Furthermore, running compa-
nies should often inspect their equipment for illegitimate devices and install closed-circuit TV to
detect the presence of such devices. As described above, several solutions in the literature pre-
vent the leaking of power side-channel information. However, most of them have been studied for
the smartphone environment and are rarely implemented in reality. In future work, we will focus
on identifying ad hoc solutions to prevent the inference of sensitive information via power-side
channels, specifically in communications between EVs and EVSEs.

10 CONCLUSIONS

EVs security is a novel topic that raises many novel challenges in protecting such systems. As we
demonstrated, introducing a charging system that utilizes personal information can lead to privacy
leakage and profiling attacks. In this article, we extended our previous work proposing EVScout2.0.
In particular, we extended the work in Reference [10] by employing a bigger dataset, a novel feature
extraction technique, and compared more algorithms for the classification task. We also show how
real-world constraints such as limited training test size and battery degradation over time impact
the classification quality. With respect to the previous work, we employed a bigger dataset, going
from 22 to 137 EVs. We employed six models capable of reaching precision and recall of 0.88 for the
balanced datasets while still offering good results (precision 0.77, recall 0.71) with high unbalanced
datasets. Furthermore, we evaluate the performance loss generated by a training set size reduction,
showing how EVScout2.0 can reach good performances even with a small training set. In addition,
we assess that the proposed algorithm can correctly identify EVs even if the model is trained with
data two years early. Finally, we showed that EVScout2.0 is capable of attaining good classification
performance, even in challenging scenarios such as highly imbalanced datasets or small training
sets, proving to be a viable and effective solution for EV profiling. We believe this work can warn
all the parties involved (i.e., the users, the manufacturers, and the scientific community) about the
feasibility of profilation attacks in the growing V2G infrastructure.
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