The Selective Production of Exotic Species project is under construction at Laboratori Nazionali di Legnaro-INFN. The aim of the collaboration is to produce highly pure Radioactive Ion Beams (RIBs) from fission fragments of a uranium carbide (UCx) target activated by a cyclotron proton beam. In order to select a specific atomic species, the main tool to be applied is the resonant laser ionization technique. We have just completed the installation of a dedicated all solid state laser system whose elements are tunable to transitions of all the elements/isotopes of interest for the project. The new laser system is based on three Titanium:sapphire laser sources, independently pumped by three Nd:YLF pump lasers, and it can be coupled to two high harmonic generation (second harmonic generation, third harmonic generation, and fourth harmonic generation) setups. The power, wavelength, and position of the laser beams are continuously monitored and stabilized by using automated active systems to improve the beam production stability of RIBs. This paper presents the main features of the laser system and examples of application of a laser ion source, including a first demonstration of photoionization of stable silver, one of the most requested elements for RIB application.
New solid state laser system for SPES: Selective Production of Exotic Species project at Laboratori Nazionali di Legnaro
Scarpa, D
Writing – Original Draft Preparation
;Buono, A;Ballan, M;Centofante, L;Corradetti, S;Lilli, G;Manzolaro, M;Monetti, A;Morselli, L;Andrighetto, A
2022
Abstract
The Selective Production of Exotic Species project is under construction at Laboratori Nazionali di Legnaro-INFN. The aim of the collaboration is to produce highly pure Radioactive Ion Beams (RIBs) from fission fragments of a uranium carbide (UCx) target activated by a cyclotron proton beam. In order to select a specific atomic species, the main tool to be applied is the resonant laser ionization technique. We have just completed the installation of a dedicated all solid state laser system whose elements are tunable to transitions of all the elements/isotopes of interest for the project. The new laser system is based on three Titanium:sapphire laser sources, independently pumped by three Nd:YLF pump lasers, and it can be coupled to two high harmonic generation (second harmonic generation, third harmonic generation, and fourth harmonic generation) setups. The power, wavelength, and position of the laser beams are continuously monitored and stabilized by using automated active systems to improve the beam production stability of RIBs. This paper presents the main features of the laser system and examples of application of a laser ion source, including a first demonstration of photoionization of stable silver, one of the most requested elements for RIB application.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.