Amyl salicylate (AS) is a fragrance massively used as a personal care product (PCP) and following the discharged in wastewaters may end up in the aquatic environment representing a potential threat for the ecosystem and living organisms. AS was recently detected in water of the Venice Lagoon, a vulnerable area continuously subjected to the income of anthropogenic chemicals. The lagoon is a relevant area for mollusc farming, including the Mediterranean mussels (Mytilus galloprovincialis) having an important economic and ecological role. Despite high levels of AS occurred in water of the Lagoon of Venice, no studies investigated the possible consequences of AS exposures on species inhabiting this ecosystem to date. For the first time, we applied a multidisciplinary approach to investigate the potential effects of the fragrance AS on Mediterranean mussels. To reach such a goal, bioaccumulation, cellular, biochemical, and molecular analyses (RNA-seq and microbiota characterization) were measured in mussels treated for 7 and 14 days with different AS Venice lagoon environmental levels (0.1 and 0.5 μg L-1). Despite chemical investigations suggested low AS bioaccumulation capability, cellular and molecular analyses highlighted the disruption of several key cellular processes after the prolonged exposures to the high AS concentration. Among them, potential immunotoxicity and changes in transcriptional regulation of pathways involved in energy metabolism, stress response, apoptosis and cell death regulations have been observed. Conversely, exposure to the low AS concentration demonstrated weak transcriptional changes and transient increased representation of opportunistic pathogens, as Arcobacter genus and Vibrio aestuarianus. Summarizing, this study provides the first overview on the effects of AS on one of the most widely farmed mollusk species.

Effects of environmental concentrations of the fragrance amyl salicylate on the mediterranean mussel Mytilus galloprovincialis

Bernardini, I
Writing – Original Draft Preparation
;
Fabrello, J
Membro del Collaboration Group
;
Ferraresso, S
Membro del Collaboration Group
;
Babbucci, M
Membro del Collaboration Group
;
Peruzza, L
Membro del Collaboration Group
;
Marin, M G
Membro del Collaboration Group
;
Bargelloni, L
Membro del Collaboration Group
;
Patarnello, T
Supervision
;
Matozzo, V
;
Milan, M
Project Administration
2022

Abstract

Amyl salicylate (AS) is a fragrance massively used as a personal care product (PCP) and following the discharged in wastewaters may end up in the aquatic environment representing a potential threat for the ecosystem and living organisms. AS was recently detected in water of the Venice Lagoon, a vulnerable area continuously subjected to the income of anthropogenic chemicals. The lagoon is a relevant area for mollusc farming, including the Mediterranean mussels (Mytilus galloprovincialis) having an important economic and ecological role. Despite high levels of AS occurred in water of the Lagoon of Venice, no studies investigated the possible consequences of AS exposures on species inhabiting this ecosystem to date. For the first time, we applied a multidisciplinary approach to investigate the potential effects of the fragrance AS on Mediterranean mussels. To reach such a goal, bioaccumulation, cellular, biochemical, and molecular analyses (RNA-seq and microbiota characterization) were measured in mussels treated for 7 and 14 days with different AS Venice lagoon environmental levels (0.1 and 0.5 μg L-1). Despite chemical investigations suggested low AS bioaccumulation capability, cellular and molecular analyses highlighted the disruption of several key cellular processes after the prolonged exposures to the high AS concentration. Among them, potential immunotoxicity and changes in transcriptional regulation of pathways involved in energy metabolism, stress response, apoptosis and cell death regulations have been observed. Conversely, exposure to the low AS concentration demonstrated weak transcriptional changes and transient increased representation of opportunistic pathogens, as Arcobacter genus and Vibrio aestuarianus. Summarizing, this study provides the first overview on the effects of AS on one of the most widely farmed mollusk species.
File in questo prodotto:
File Dimensione Formato  
Bernardini et al.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 3.24 MB
Formato Adobe PDF
3.24 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3449094
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact