Tannin polyphenols are produced by plants to protect themselves against natural decay. It is expected that impregnating low-durable timber with tannin extracts of more durable species such as quebracho (Schinopsis balansae) will enhance the durability of the specimens. This biomimetic approach combined with the in situ polymerization of quebracho–hexamine formulations can be a valid alternative to synthetic wood preservatives. In this work, we aim to evaluate the impregnation mechanism as well as the impact of tannin and hardener concentration on the mechanical and leaching resistance properties of treated wood. Compression resistance, surface hardness and leaching resistance of four different common non-durable wood species: spruce (Picea abies), pine (Pinus spp.), poplar (Populus alba) and beech (Fagus sylvatica) impregnated with different concentrations of extract and hexamine are presented. The results show that the mechanical properties of tannin-impregnated timber are enhanced, especially for timber with lower densities. Tannin and hardener concentrations tendentially do not contribute significantly to further increase MOE (modulus of elasticity), MOR (modulus of rupture) and Brinell hardness. Similar results are also obtained when the specimens are tested against leaching: tannin is significantly more water-resistant when cured with hexamine, but higher amounts of hardener do not further improve its water resistance. These findings suggest that quebracho tannin–hexamine formulations are already effective at low concentrations (5 to 10% extract with 2.5 to 5% hexamine).

Quebracho-based wood preservatives: Effect of concentration and hardener on timber properties

Emanuele Cesprini
Data Curation
;
Tiziana Urso
Methodology
;
Michela Zanetti
Resources
;
Gianluca Tondi
Conceptualization
2022

Abstract

Tannin polyphenols are produced by plants to protect themselves against natural decay. It is expected that impregnating low-durable timber with tannin extracts of more durable species such as quebracho (Schinopsis balansae) will enhance the durability of the specimens. This biomimetic approach combined with the in situ polymerization of quebracho–hexamine formulations can be a valid alternative to synthetic wood preservatives. In this work, we aim to evaluate the impregnation mechanism as well as the impact of tannin and hardener concentration on the mechanical and leaching resistance properties of treated wood. Compression resistance, surface hardness and leaching resistance of four different common non-durable wood species: spruce (Picea abies), pine (Pinus spp.), poplar (Populus alba) and beech (Fagus sylvatica) impregnated with different concentrations of extract and hexamine are presented. The results show that the mechanical properties of tannin-impregnated timber are enhanced, especially for timber with lower densities. Tannin and hardener concentrations tendentially do not contribute significantly to further increase MOE (modulus of elasticity), MOR (modulus of rupture) and Brinell hardness. Similar results are also obtained when the specimens are tested against leaching: tannin is significantly more water-resistant when cured with hexamine, but higher amounts of hardener do not further improve its water resistance. These findings suggest that quebracho tannin–hexamine formulations are already effective at low concentrations (5 to 10% extract with 2.5 to 5% hexamine).
2022
File in questo prodotto:
File Dimensione Formato  
2022-Baccini_Coatings.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 27.52 MB
Formato Adobe PDF
27.52 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3447927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact