Forest trees are experiencing increasing frequency and intensity of drought events with climate change. We investigated xylem and phloem traits from mature Fagus sylvatica and Picea abies trees after 5 years of complete exclusion of throughfall precipitation during the growing season. Xylem and phloem anatomy, leaf and branch biomass were analysed along top branches of ~1.5 m lenght in 5 throughfall precipitation excluded (TE) and 5 control (CO) trees of both beech and spruce. Xylem traits were analysed on wood cores extracted from the stem at breast height. In the top branches of both species, the lumen diameter (or area) of xylem and phloem conduits did not differ between TE and CO trees. At breast height, TE trees of both species produced narrower xylem rings and conduits. While allocation to branch (BM) and needle biomass (LM) did not change between TE and CO in P. abies, TE F. sylvatica trees allocated proportionally more biomass to leaves (LM) than BM compared to CO. Despite artificial drought increased the mortality in the TE plots, our results revealed no changes in both xylem and phloem anatomies, undermining the hypothesis that successful acclimation to drought would primarily involve increased resistance against air embolism.

No xylem phenotypic plasticity in mature Picea abies and Fagus sylvatica trees after five years of throughfall precipitation exclusion

Petit, Giai
;
Zambonini, Dario;
2022

Abstract

Forest trees are experiencing increasing frequency and intensity of drought events with climate change. We investigated xylem and phloem traits from mature Fagus sylvatica and Picea abies trees after 5 years of complete exclusion of throughfall precipitation during the growing season. Xylem and phloem anatomy, leaf and branch biomass were analysed along top branches of ~1.5 m lenght in 5 throughfall precipitation excluded (TE) and 5 control (CO) trees of both beech and spruce. Xylem traits were analysed on wood cores extracted from the stem at breast height. In the top branches of both species, the lumen diameter (or area) of xylem and phloem conduits did not differ between TE and CO trees. At breast height, TE trees of both species produced narrower xylem rings and conduits. While allocation to branch (BM) and needle biomass (LM) did not change between TE and CO in P. abies, TE F. sylvatica trees allocated proportionally more biomass to leaves (LM) than BM compared to CO. Despite artificial drought increased the mortality in the TE plots, our results revealed no changes in both xylem and phloem anatomies, undermining the hypothesis that successful acclimation to drought would primarily involve increased resistance against air embolism.
2022
File in questo prodotto:
File Dimensione Formato  
Petit et al 2022 GCB.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 7.28 MB
Formato Adobe PDF
7.28 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3447630
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact