Today, the information gathered from massive learning platforms and social media sites allows to derive a very comprehensive set of learning information. To this aim, data mining techniques can surely help to gain proper insights, personalise learning experiences, formative assessments, performance measurements, as well as to develop new learning and instructional design models. Therefore, a core requirement is to classify, mix, filter and process the big data sources involved by means of proper learning and social learning analytics tools. In this perspective, this paper investigates the most promising applications and issues of big data for the design of the next-generation of massive learning platforms and social media sites. Specifically, it addresses the methodological tools and instruments for social learning analytics, pitfalls arising from the usage of open datasets, and privacy and security aspects. The paper also provides future research directions.

Big data for social media learning analytics: Potentials and challenges

Manca S.
Conceptualization
;
Raffaghelli J. E.
Writing – Original Draft Preparation
2016

Abstract

Today, the information gathered from massive learning platforms and social media sites allows to derive a very comprehensive set of learning information. To this aim, data mining techniques can surely help to gain proper insights, personalise learning experiences, formative assessments, performance measurements, as well as to develop new learning and instructional design models. Therefore, a core requirement is to classify, mix, filter and process the big data sources involved by means of proper learning and social learning analytics tools. In this perspective, this paper investigates the most promising applications and issues of big data for the design of the next-generation of massive learning platforms and social media sites. Specifically, it addresses the methodological tools and instruments for social learning analytics, pitfalls arising from the usage of open datasets, and privacy and security aspects. The paper also provides future research directions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3439852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact