The famous receptance method for the active vibration control has been mainly applied for pole placement. In this paper, it is exploited to solve the multi-input antiresonance assignment and then it is extended to handle the simultaneous pole-zero assignment. The design of the controllers is achieved through the measured receptances. The chief advantage is that system model is not needed, and the controller gains are synthetized through the data collected through experimental measurements. Two different approaches are proposed to compute the gains: a single-step method and a multi-step method. Both the techniques are developed for either state or state-derivative control. Two techniques to handle the non-uniqueness of the solution are proposed as well: the first one allows including specification on the eigenvectors, and hence on the spatial response of the system when excited at the antiresonance frequency; the second one places approximately all the poles through an optimization-based formulation. The proposed methods are validated through some numerical examples taken from common benchmarks in this field of research.

Pole-zero assignment by the receptance method: multi-input active vibration control

Richiedei D.
;
Tamellin I.;Trevisani A.
2022

Abstract

The famous receptance method for the active vibration control has been mainly applied for pole placement. In this paper, it is exploited to solve the multi-input antiresonance assignment and then it is extended to handle the simultaneous pole-zero assignment. The design of the controllers is achieved through the measured receptances. The chief advantage is that system model is not needed, and the controller gains are synthetized through the data collected through experimental measurements. Two different approaches are proposed to compute the gains: a single-step method and a multi-step method. Both the techniques are developed for either state or state-derivative control. Two techniques to handle the non-uniqueness of the solution are proposed as well: the first one allows including specification on the eigenvectors, and hence on the spatial response of the system when excited at the antiresonance frequency; the second one places approximately all the poles through an optimization-based formulation. The proposed methods are validated through some numerical examples taken from common benchmarks in this field of research.
File in questo prodotto:
File Dimensione Formato  
Tamellin_MSSP_2022.pdf

non disponibili

Descrizione: Tamellin MSSP 2022 articolo
Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3439602
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 14
  • OpenAlex ND
social impact