X-ray computed tomography (CT) is an imaging technique, which originally found its application in the medical field and over years of research extended its use to industry, mainly to nondestructive testing. In the last years, CT has been also used as a tool for dimensional metrology, and is considered the third generation of measuring techniques in coordinate metrology, after tactile and optical coordinate measuring systems. The main advantage of CT over other measuring instruments is the fact that both internal and external geometries of the measured workpiece can be visualized as a 3D model, and analyzed without destruction. CT measurement chain is affected by numerous and often complex influence factors. Furthermore, due to the fact that it is still relatively new technique for coordinate metrology, and because of the lack of research and standardized procedures, CT has not yet reached maturity as a dimensional measurement technology. Sources of CT measurement uncertainty are still not completely understood in some cases and, as a result, achieving CT measurement traceability is difficult. Traceability of measurements is an important property ensuring that the measurement results are traceable to the SI unit through unbroken chains of calibrations. Reference standards are a typical means to test metrological systems and investigate various factors that influence the measurement results. In this thesis, several standards dedicated to different mainstays towards the establishment of measurement traceability – namely metrological performance verification according to international standards, metrological performance verification of CT specific applications, calibration, and evaluation of measurement uncertainty – were developed. Furthermore, as an output of experience and findings gained during the project, a good practice guide for developing reference standards for CT dimensional metrology was compiled. The first standard proposed in this Ph.D. work was developed for the evaluation of accuracy of CT porosity measurements and for establishing their metrological traceability. The design of the standard contains hemispherical features resembling artificial internal porosity and its dismountable configuration ensures calibration by different measuring instruments. It was proved that not only the accuracy of CT porosity measurements can be evaluated using this standard, but the accuracy can also be improved by using the artifact. Moreover, a procedure for establishing the traceability of CT porosity measurements obtained from industrial parts was proposed. Calibration of CT instrument geometry was achieved by using a standard developed during this project, namely the CT calibration tube (CT2), in combination with the so-called “minimization procedure” used for estimating CT geometrical parameters, and a Monte Carlo method for evaluating the measurement uncertainty. Furthermore, based on results from experimental implementations of the developed standard and method, it was proven that it is possible to align the CT system to its nearly ideal geometry. Moreover, a comprehensive CT instrument geometry alignment method was proposed, which is based on the use of the CT2 standard, the minimization procedure, and a novel advanced reconstruction algorithm (the so called FlexCT, developed by KU Leuven). Multi-material aspects of CT dimensional measurements were also addressed in this Ph.D. thesis. A series of reference standards were developed for evaluating the multi-material effects on gap measurements. Different behavior between results obtained on mono- and multi-material samples confirmed the existence of the multi-material influence. Furthermore, an alternative dual-energy CT scanning approach was applied to enhance the measurement results.

La tomografia computerizzata a raggi X (computed tomography, CT) è una tecnica diagnostica per immagini, che originalmente trovava la sua applicazione in campo medico e con anni di ricerca ha ampliato il suo uso per l’industria, principalmente per controlli non distruttivi. Negli ultimi anni, la CT è stata utilizzata anche come uno strumento per metrologia dimensionale, ed può essere considerata la terza generazione delle tecniche di misura a coordinate, dopo i sistemi di misura a contatto e quelli ottici. Il vantaggio principale della CT rispetto ad altre tecnologie di misura è che sia le geometrie interne sia quelle esterne del pezzo misurato possono essere visualizzate in un modello tridimensionale e analizzate in modo non distruttivo. La catena di misura della CT è influenzata da numerosi e spesso complessi fattori. Inoltre, poiché la CT è ancora una tecnica relativamente nuova per la metrologia a coordinate che necessita di ulteriori investimenti in attività di ricerca e nello sviluppo di procedure standardizzate, non ha ancora raggiunto la piena maturità richiesta per gli strumenti di misura dimensionali. Le fonti di incertezza di misura non sono ancora completamente analizzate in alcuni casi e, di conseguenza, è difficile ottenere la riferibilità delle misure CT. La riferibilità delle misure è una proprietà importante che garantisce che i risultati delle misure siano riferibili alle unità SI attraverso catene ininterrotte di tarature. I campioni di riferimento sono mezzi tipici per testare i sistemi metrologici ed investigare i vari fattori che influenzano i risultati delle misure. In questa tesi, sono stati sviluppati diversi campioni, dedicati ai diversi requisiti della riferibilità delle misure, e in particolare: la verifica delle prestazioni metrologiche secondo la normativa internazionale, la verifica delle prestazioni metrologiche in specifiche applicazioni CT, la taratura e la valutazione dell’incertezza delle misure. Inoltre, come risultato finale delle esperienze e delle conoscenze ottenute durante il progetto, è stata compilata una guida di buone pratiche per lo sviluppo dei campioni di riferimento per la metrologia dimensionale con CT. Il primo campione proposto in questa tesi di dottorato è stato sviluppato per valutare l’accuratezza della CT utilizzata per misure di porosità e per stabilirne la riferibilità metrologica. La progettazione del campione è basata su geometrie emisferiche che riproducono una porosità interna artificiale. La configurazione disassemblabile del campione garantisce la possibilità di taratura mediante diversi strumenti di misura. É stato provato che, usando questo campione, l’accuratezza delle misure CT della porosità non solo può essere valutata, ma può anche essere migliorata. Inoltre, è stata proposta una procedura per stabilire la riferibilità delle misure CT di porosità ottenute da parti industriali. La taratura della geometria dello strumento CT e stata studiata sviluppando un campione – denominato CT calibration tube (CT2) – utilizzato assieme alla cosiddetta “minimization procedure”, utile per stimare i parametri geometrici dello strumento CT, e ad un metodo Monte Carlo per valutare l’incertezza di misura. Inoltre, sulla base dei risultati sperimentali ottenuti usando il metodo e il campione sviluppato, è stato dimostrato come sia possibile l’allineamento del sistema CT alla sua geometria quasi ideale. In aggiunta, è stato proposto un metodo completo per l’allineamento del sistema CT. Tale metodo è basato sull’uso dello standard CT2, della minimization procedure e di un nuovo algoritmo avanzato di ricostruzione (denominato FlexCT e sviluppato da KU Leuven). Una parte ulteriore di questo lavoro è stata dedicata allo studio degli aspetti multi-materiale delle misure dimensionali CT. Una serie di campioni di riferimento è stata sviluppata per valutare gli effetti della presenza di materiali multipli sulle misure di “gap”. Il comportamento diverso tra i risultati ottenuti su campioni mono- e multi-materiale ha confermato l’esistenza dell’influenza multi-materiale. Inoltre, un approccio alternativo delle scansioni CT basato sull’uso di diversi livelli di energia dei raggi X, il cosiddetto “dual-energy CT”, è estato applicato per migliorare i risultati delle misure.

Reference standards and methods for traceable X-ray computed tomography dimensional metrology / Hermanek, Petr. - (2017 Dec 29).

Reference standards and methods for traceable X-ray computed tomography dimensional metrology

Hermanek, Petr
2017

Abstract

La tomografia computerizzata a raggi X (computed tomography, CT) è una tecnica diagnostica per immagini, che originalmente trovava la sua applicazione in campo medico e con anni di ricerca ha ampliato il suo uso per l’industria, principalmente per controlli non distruttivi. Negli ultimi anni, la CT è stata utilizzata anche come uno strumento per metrologia dimensionale, ed può essere considerata la terza generazione delle tecniche di misura a coordinate, dopo i sistemi di misura a contatto e quelli ottici. Il vantaggio principale della CT rispetto ad altre tecnologie di misura è che sia le geometrie interne sia quelle esterne del pezzo misurato possono essere visualizzate in un modello tridimensionale e analizzate in modo non distruttivo. La catena di misura della CT è influenzata da numerosi e spesso complessi fattori. Inoltre, poiché la CT è ancora una tecnica relativamente nuova per la metrologia a coordinate che necessita di ulteriori investimenti in attività di ricerca e nello sviluppo di procedure standardizzate, non ha ancora raggiunto la piena maturità richiesta per gli strumenti di misura dimensionali. Le fonti di incertezza di misura non sono ancora completamente analizzate in alcuni casi e, di conseguenza, è difficile ottenere la riferibilità delle misure CT. La riferibilità delle misure è una proprietà importante che garantisce che i risultati delle misure siano riferibili alle unità SI attraverso catene ininterrotte di tarature. I campioni di riferimento sono mezzi tipici per testare i sistemi metrologici ed investigare i vari fattori che influenzano i risultati delle misure. In questa tesi, sono stati sviluppati diversi campioni, dedicati ai diversi requisiti della riferibilità delle misure, e in particolare: la verifica delle prestazioni metrologiche secondo la normativa internazionale, la verifica delle prestazioni metrologiche in specifiche applicazioni CT, la taratura e la valutazione dell’incertezza delle misure. Inoltre, come risultato finale delle esperienze e delle conoscenze ottenute durante il progetto, è stata compilata una guida di buone pratiche per lo sviluppo dei campioni di riferimento per la metrologia dimensionale con CT. Il primo campione proposto in questa tesi di dottorato è stato sviluppato per valutare l’accuratezza della CT utilizzata per misure di porosità e per stabilirne la riferibilità metrologica. La progettazione del campione è basata su geometrie emisferiche che riproducono una porosità interna artificiale. La configurazione disassemblabile del campione garantisce la possibilità di taratura mediante diversi strumenti di misura. É stato provato che, usando questo campione, l’accuratezza delle misure CT della porosità non solo può essere valutata, ma può anche essere migliorata. Inoltre, è stata proposta una procedura per stabilire la riferibilità delle misure CT di porosità ottenute da parti industriali. La taratura della geometria dello strumento CT e stata studiata sviluppando un campione – denominato CT calibration tube (CT2) – utilizzato assieme alla cosiddetta “minimization procedure”, utile per stimare i parametri geometrici dello strumento CT, e ad un metodo Monte Carlo per valutare l’incertezza di misura. Inoltre, sulla base dei risultati sperimentali ottenuti usando il metodo e il campione sviluppato, è stato dimostrato come sia possibile l’allineamento del sistema CT alla sua geometria quasi ideale. In aggiunta, è stato proposto un metodo completo per l’allineamento del sistema CT. Tale metodo è basato sull’uso dello standard CT2, della minimization procedure e di un nuovo algoritmo avanzato di ricostruzione (denominato FlexCT e sviluppato da KU Leuven). Una parte ulteriore di questo lavoro è stata dedicata allo studio degli aspetti multi-materiale delle misure dimensionali CT. Una serie di campioni di riferimento è stata sviluppata per valutare gli effetti della presenza di materiali multipli sulle misure di “gap”. Il comportamento diverso tra i risultati ottenuti su campioni mono- e multi-materiale ha confermato l’esistenza dell’influenza multi-materiale. Inoltre, un approccio alternativo delle scansioni CT basato sull’uso di diversi livelli di energia dei raggi X, il cosiddetto “dual-energy CT”, è estato applicato per migliorare i risultati delle misure.
29-dic-2017
X-ray computed tomography (CT) is an imaging technique, which originally found its application in the medical field and over years of research extended its use to industry, mainly to nondestructive testing. In the last years, CT has been also used as a tool for dimensional metrology, and is considered the third generation of measuring techniques in coordinate metrology, after tactile and optical coordinate measuring systems. The main advantage of CT over other measuring instruments is the fact that both internal and external geometries of the measured workpiece can be visualized as a 3D model, and analyzed without destruction. CT measurement chain is affected by numerous and often complex influence factors. Furthermore, due to the fact that it is still relatively new technique for coordinate metrology, and because of the lack of research and standardized procedures, CT has not yet reached maturity as a dimensional measurement technology. Sources of CT measurement uncertainty are still not completely understood in some cases and, as a result, achieving CT measurement traceability is difficult. Traceability of measurements is an important property ensuring that the measurement results are traceable to the SI unit through unbroken chains of calibrations. Reference standards are a typical means to test metrological systems and investigate various factors that influence the measurement results. In this thesis, several standards dedicated to different mainstays towards the establishment of measurement traceability – namely metrological performance verification according to international standards, metrological performance verification of CT specific applications, calibration, and evaluation of measurement uncertainty – were developed. Furthermore, as an output of experience and findings gained during the project, a good practice guide for developing reference standards for CT dimensional metrology was compiled. The first standard proposed in this Ph.D. work was developed for the evaluation of accuracy of CT porosity measurements and for establishing their metrological traceability. The design of the standard contains hemispherical features resembling artificial internal porosity and its dismountable configuration ensures calibration by different measuring instruments. It was proved that not only the accuracy of CT porosity measurements can be evaluated using this standard, but the accuracy can also be improved by using the artifact. Moreover, a procedure for establishing the traceability of CT porosity measurements obtained from industrial parts was proposed. Calibration of CT instrument geometry was achieved by using a standard developed during this project, namely the CT calibration tube (CT2), in combination with the so-called “minimization procedure” used for estimating CT geometrical parameters, and a Monte Carlo method for evaluating the measurement uncertainty. Furthermore, based on results from experimental implementations of the developed standard and method, it was proven that it is possible to align the CT system to its nearly ideal geometry. Moreover, a comprehensive CT instrument geometry alignment method was proposed, which is based on the use of the CT2 standard, the minimization procedure, and a novel advanced reconstruction algorithm (the so called FlexCT, developed by KU Leuven). Multi-material aspects of CT dimensional measurements were also addressed in this Ph.D. thesis. A series of reference standards were developed for evaluating the multi-material effects on gap measurements. Different behavior between results obtained on mono- and multi-material samples confirmed the existence of the multi-material influence. Furthermore, an alternative dual-energy CT scanning approach was applied to enhance the measurement results.
Computed tomography, dimensional metrology, traceability, calibration, measurement uncertainty, porosity, multi-material measurements
Reference standards and methods for traceable X-ray computed tomography dimensional metrology / Hermanek, Petr. - (2017 Dec 29).
File in questo prodotto:
File Dimensione Formato  
Hermanek_Petr_Thesis.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 27.15 MB
Formato Adobe PDF
27.15 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3426671
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact