The promiscuity of enzymes allows for their implementation as catalysts for non-native chemical transformations. Utilizing the redox activity of metalloenzymes under activator regenerated by electron transfer (ARGET) ATRP conditions, well-controlled and defined polymers can be generated. In this chapter, we review bioATRP in solution and on surfaces and provide experimental protocols for hemoglobin-catalyzed ATRP and for surface-initiated biocatalytic ATRP. This chapter highlights the polymerization of acrylate and acrylamide monomers and provides detailed experimental protocols for the characterization of the polymers and of the polymer brushes.
Biocatalytic ATRP in solution and on surfaces
Benetti E. M.
;
2019
Abstract
The promiscuity of enzymes allows for their implementation as catalysts for non-native chemical transformations. Utilizing the redox activity of metalloenzymes under activator regenerated by electron transfer (ARGET) ATRP conditions, well-controlled and defined polymers can be generated. In this chapter, we review bioATRP in solution and on surfaces and provide experimental protocols for hemoglobin-catalyzed ATRP and for surface-initiated biocatalytic ATRP. This chapter highlights the polymerization of acrylate and acrylamide monomers and provides detailed experimental protocols for the characterization of the polymers and of the polymer brushes.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.