Experiments that systematically explore rock friction under crustal earthquake conditions reveal that faults undergo abrupt dynamic weakening. Processes related to heating and weakening of fault surfaces have been invoked to explain pronounced velocity weakening. Both contact asperity temperature Ta and background temperature T of the slip zone evolve significantly during high-velocity slip due to heat sources (frictional work), heat sinks (e.g., latent heat of decomposition processes), and diffusion. Using carefully calibrated High-Velocity Rotary Friction experiments, we test the compatibility of thermal weakening models: (1) a model of friction based only on T in an extremely simplified, Arrhenius-like thermal dependence; (2) a flash heating model which accounts for the evolution of both V and T; (3) same but including heat sinks in the thermal balance; and (4) same but including the thermal dependence of diffusivity and heat capacity. All models reflect the experimental results but model (1) results in unrealistically low temperatures and model (2) reproduces the restrengthening phase only by modifying the parameters for each experimental condition. The presence of dissipative heat sinks in stage (3) significantly affects T and reflects on the friction, allowing a better joint fit of the initial weakening and final strength recovery across a range of experiments. Temperature is significantly altered by thermal dependence of (4). However, similar results can be obtained by (3) and (4) by adjusting the energy sinks. To compute temperature in this type of problem, we compare the efficiency of three different numerical approximations (finite difference, wavenumber summation, and discrete integral).

Thermal Weakening Friction During Seismic Slip: Experiments and Models With Heat Sources and Sinks

Nielsen S.
;
Di Toro G.
2021

Abstract

Experiments that systematically explore rock friction under crustal earthquake conditions reveal that faults undergo abrupt dynamic weakening. Processes related to heating and weakening of fault surfaces have been invoked to explain pronounced velocity weakening. Both contact asperity temperature Ta and background temperature T of the slip zone evolve significantly during high-velocity slip due to heat sources (frictional work), heat sinks (e.g., latent heat of decomposition processes), and diffusion. Using carefully calibrated High-Velocity Rotary Friction experiments, we test the compatibility of thermal weakening models: (1) a model of friction based only on T in an extremely simplified, Arrhenius-like thermal dependence; (2) a flash heating model which accounts for the evolution of both V and T; (3) same but including heat sinks in the thermal balance; and (4) same but including the thermal dependence of diffusivity and heat capacity. All models reflect the experimental results but model (1) results in unrealistically low temperatures and model (2) reproduces the restrengthening phase only by modifying the parameters for each experimental condition. The presence of dissipative heat sinks in stage (3) significantly affects T and reflects on the friction, allowing a better joint fit of the initial weakening and final strength recovery across a range of experiments. Temperature is significantly altered by thermal dependence of (4). However, similar results can be obtained by (3) and (4) by adjusting the energy sinks. To compute temperature in this type of problem, we compare the efficiency of three different numerical approximations (finite difference, wavenumber summation, and discrete integral).
File in questo prodotto:
File Dimensione Formato  
Nielsen_et_al_JGR2021.pdf

accesso aperto

Descrizione: Articolo completo gold open access
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.48 MB
Formato Adobe PDF
2.48 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3400832
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact