Intermediate-mass black holes (IMBHs) in the mass range $10^2\!-\!10^5\, \mathrm{M_{\odot }}$ bridge the gap between stellar black holes (BHs) and supermassive BHs. Here, we investigate the possibility that IMBHs form in young star clusters via runaway collisions and BH mergers. We analyse 104 simulations of dense young star clusters, featuring up-to-date stellar wind models and prescriptions for core collapse and (pulsational) pair instability. In our simulations, only nine IMBHs out of 218 form via binary BH mergers, with a mass ∼100-140 M?. This channel is strongly suppressed by the low escape velocity of our star clusters. In contrast, IMBHs with masses up to ∼438 M? efficiently form via runaway stellar collisions, especially at low metallicity. Up to ∼0.2 per cent of all the simulated BHs are IMBHs, depending on progenitor's metallicity. The runaway formation channel is strongly suppressed in metal-rich (Z = 0.02) star clusters, because of stellar winds. IMBHs are extremely effici...
Intermediate-mass black holes from stellar mergers in young star clusters
Michela Mapelli;Mario Pasquato;Sara Rastello;Alessandro Ballone;Marco Dall’Amico;Nicola Giacobbo;Giuliano Iorio;Mario Spera;Stefano Torniamenti;
2021
Abstract
Intermediate-mass black holes (IMBHs) in the mass range $10^2\!-\!10^5\, \mathrm{M_{\odot }}$ bridge the gap between stellar black holes (BHs) and supermassive BHs. Here, we investigate the possibility that IMBHs form in young star clusters via runaway collisions and BH mergers. We analyse 104 simulations of dense young star clusters, featuring up-to-date stellar wind models and prescriptions for core collapse and (pulsational) pair instability. In our simulations, only nine IMBHs out of 218 form via binary BH mergers, with a mass ∼100-140 M?. This channel is strongly suppressed by the low escape velocity of our star clusters. In contrast, IMBHs with masses up to ∼438 M? efficiently form via runaway stellar collisions, especially at low metallicity. Up to ∼0.2 per cent of all the simulated BHs are IMBHs, depending on progenitor's metallicity. The runaway formation channel is strongly suppressed in metal-rich (Z = 0.02) star clusters, because of stellar winds. IMBHs are extremely effici...File | Dimensione | Formato | |
---|---|---|---|
stab2390.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso libero
Dimensione
1.72 MB
Formato
Adobe PDF
|
1.72 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.