Representative and very uneven texturally bricks having yellow/beige or pale or dark red colors from the Renaissance walls (16th century) of Padua, Northeast Italy, were studied by means of colorimetric, petrographic (MOP), chemical (XRF), mineralogical (PXRD) and microstructural analysis (FESEM-EDS). Starting from the color measurements of the ceramic bodies, the manufacturing technologies and their influence on the physical behavior and durability of the bricks were established. The porous system was characterized by means of hygric tests and mercury intrusion porosimetry; the compactness and structural anisotropy were defined through ultrasound velocity; the uniaxial compressive strength was determined; and durability to salt crystallization and frost action of the bricks was assessed. Mg- and Ca-rich illitic clays fired at temperatures 900 C were used to manufacture the beige hue bodies, while the pale red bricks were made out with Ca- and Fe-rich illitic clays fired at 850–900 C. A lower carbonate content on the base clays and a lower firing temperature were the main causes responsible for the changing colors from beige to red hue. The increase of the red color was associated to higher silicate inclusions content and lower development of reaction rims around grains. The low sintering degree achieved yielded highly porous bodies with diverse porous systems, leading to differential physical performance and durability of the bricks that may turn out beneficial for the conservation of the historic walls

Production Technologies of Ancient Bricks from Padua, Italy: Changing Colors and Resistance over Time

Elena Mercedes Perez Monserrat
;
Lara Maritan;Enrico Garbin;
2021

Abstract

Representative and very uneven texturally bricks having yellow/beige or pale or dark red colors from the Renaissance walls (16th century) of Padua, Northeast Italy, were studied by means of colorimetric, petrographic (MOP), chemical (XRF), mineralogical (PXRD) and microstructural analysis (FESEM-EDS). Starting from the color measurements of the ceramic bodies, the manufacturing technologies and their influence on the physical behavior and durability of the bricks were established. The porous system was characterized by means of hygric tests and mercury intrusion porosimetry; the compactness and structural anisotropy were defined through ultrasound velocity; the uniaxial compressive strength was determined; and durability to salt crystallization and frost action of the bricks was assessed. Mg- and Ca-rich illitic clays fired at temperatures 900 C were used to manufacture the beige hue bodies, while the pale red bricks were made out with Ca- and Fe-rich illitic clays fired at 850–900 C. A lower carbonate content on the base clays and a lower firing temperature were the main causes responsible for the changing colors from beige to red hue. The increase of the red color was associated to higher silicate inclusions content and lower development of reaction rims around grains. The low sintering degree achieved yielded highly porous bodies with diverse porous systems, leading to differential physical performance and durability of the bricks that may turn out beneficial for the conservation of the historic walls
2021
File in questo prodotto:
File Dimensione Formato  
2021_Perez-Monserrat et al_Minerals.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 8.84 MB
Formato Adobe PDF
8.84 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3395424
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact