The cyclic polymer topology strongly alters the interfacial, physico-chemical properties of polymer brushes, when compared to the linear counterparts. In this study, we especially concentrated on poly-2-ethyl-2-oxazoline (PEOXA) cyclic and linear grafts assembled on titanium oxide surfaces by the "grafting-to" technique. The smaller hydrodynamic radius of ring PEOXAs favors the formation of denser brushes with respect to linear analogs. Denser and more compact cyclic brushes generate a steric barrier that surpasses the typical entropic shield by a linear brush. This phenomenon, translates into an improved resistance towards biological contamination from different protein mixtures. Moreover, the enhancement of steric stabilization coupled to the intrinsic absence of chain ends by cyclic brushes, produce surfaces displaying a superlubricating character when they are sheared against each other. All these topological effects pave the way for the application of cyclic brushes for surface functionalization, enabling the modulation of physico-chemical properties that could be just marginally tuned by applying linear grafts.

Topological Polymer Chemistry Enters Surface Science: Linear versus Cyclic Polymer Brushes

Benetti E
2016

Abstract

The cyclic polymer topology strongly alters the interfacial, physico-chemical properties of polymer brushes, when compared to the linear counterparts. In this study, we especially concentrated on poly-2-ethyl-2-oxazoline (PEOXA) cyclic and linear grafts assembled on titanium oxide surfaces by the "grafting-to" technique. The smaller hydrodynamic radius of ring PEOXAs favors the formation of denser brushes with respect to linear analogs. Denser and more compact cyclic brushes generate a steric barrier that surpasses the typical entropic shield by a linear brush. This phenomenon, translates into an improved resistance towards biological contamination from different protein mixtures. Moreover, the enhancement of steric stabilization coupled to the intrinsic absence of chain ends by cyclic brushes, produce surfaces displaying a superlubricating character when they are sheared against each other. All these topological effects pave the way for the application of cyclic brushes for surface functionalization, enabling the modulation of physico-chemical properties that could be just marginally tuned by applying linear grafts.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3394596
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 156
  • ???jsp.display-item.citation.isi??? 143
  • OpenAlex ND
social impact