Covalent crosslinking of weak polyelectrolyte brushes widens the tuning potential for their swelling, nanomechanical, and nanotribological properties, which can be simultaneously adjusted by varying the crosslinker content and the pH of the surroundings. We demonstrate that this is especially valid for poly(hydroxyethyl methacrylate) (PHEMA) brushes and brush hydrogels, and their ionizable, succinate-modified derivatives (PHEMA-SA), covalently crosslinked with different amounts of di(ethylene glycol) dimethacrylate (DEGDMA) during surface-initiated atom transfer radical polymerization (SI-ATRP). Atomic force microscopy (AFM) methods highlight how pristine PHEMA films are stiff and display high coefficients of friction in water. Their succinate derivatives swell profusely in aqueous, media. Under acidic conditions they are neutral, compliant, and lubricious, with apparent Young's moduli (E*) lying between 10 and 30 kPa. Their contact mechanical behavior can be described by either the Johnson-Kendall-Roberts (JKR) or the Derjaguin-Muller-Toporov (DMT) model, depending on crosslinker content. In contrast, under basic conditions, brushes and brush hydrogels become charged, expand, and present a rigid, electrostatic barrier toward the AFM probe. Friction is extremely low at relatively low applied loads, whereas it increases at higher loads, to an extent that is regulated by the number of crosslinks within the films.

Controlled Crosslinking Is a Tool To Precisely Modulate the Nanomechanical and Nanotribological Properties of Polymer Brushes

Benetti E
2017

Abstract

Covalent crosslinking of weak polyelectrolyte brushes widens the tuning potential for their swelling, nanomechanical, and nanotribological properties, which can be simultaneously adjusted by varying the crosslinker content and the pH of the surroundings. We demonstrate that this is especially valid for poly(hydroxyethyl methacrylate) (PHEMA) brushes and brush hydrogels, and their ionizable, succinate-modified derivatives (PHEMA-SA), covalently crosslinked with different amounts of di(ethylene glycol) dimethacrylate (DEGDMA) during surface-initiated atom transfer radical polymerization (SI-ATRP). Atomic force microscopy (AFM) methods highlight how pristine PHEMA films are stiff and display high coefficients of friction in water. Their succinate derivatives swell profusely in aqueous, media. Under acidic conditions they are neutral, compliant, and lubricious, with apparent Young's moduli (E*) lying between 10 and 30 kPa. Their contact mechanical behavior can be described by either the Johnson-Kendall-Roberts (JKR) or the Derjaguin-Muller-Toporov (DMT) model, depending on crosslinker content. In contrast, under basic conditions, brushes and brush hydrogels become charged, expand, and present a rigid, electrostatic barrier toward the AFM probe. Friction is extremely low at relatively low applied loads, whereas it increases at higher loads, to an extent that is regulated by the number of crosslinks within the films.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3394575
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 43
  • OpenAlex ND
social impact