On-fault processes during earthquakes contribute to seismic rupture propagation and slip. Here we investigate clast fragmentation in an experimental pseudotachylyte (solidified seismic melt) produced with a rotary shear machine. We slid for 0.44 m (corresponding to Mw ≥ 6 earthquakes), at slip rates > 1 m/s, pre-cut samples of quartz + phyllosilicates + plagioclase + sillimanite + garnet -bearing ultramylonite, that hosts pseudotachylytes in nature. The ultramylonite minerals extensively preserved as clasts in the experimental pseudotachylyte are quartz, plagioclase, and sillimanite. Garnet is scarcely preserved, despite having a melting temperature similar to plagioclase, probably due to having low thermal shock resistance. This selective clast survival is identical to the one found in the natural pseudotachylytes. Based on these experimental observations and assuming non-equilibrium melting, the preservation of a mineral, as a clast, in the melt appears to be controlled by its thermal shock properties as well as by its melting temperature. Since the mechanical effects of rupture propagation in these experiments were negligible, we conclude that, for Mw ≥ 6 earthquakes, (i) frictional slip and heating of the slipping zone plus (ii) thermomechanical properties of minerals, rather than fault rupture processes, control mineral comminution and clast survival in frictional melts.

Selective clast survival in an experimentally-produced pseudotachylyte

Papa S.
;
Di Toro G.;Favero M.;Pennacchioni G.
2021

Abstract

On-fault processes during earthquakes contribute to seismic rupture propagation and slip. Here we investigate clast fragmentation in an experimental pseudotachylyte (solidified seismic melt) produced with a rotary shear machine. We slid for 0.44 m (corresponding to Mw ≥ 6 earthquakes), at slip rates > 1 m/s, pre-cut samples of quartz + phyllosilicates + plagioclase + sillimanite + garnet -bearing ultramylonite, that hosts pseudotachylytes in nature. The ultramylonite minerals extensively preserved as clasts in the experimental pseudotachylyte are quartz, plagioclase, and sillimanite. Garnet is scarcely preserved, despite having a melting temperature similar to plagioclase, probably due to having low thermal shock resistance. This selective clast survival is identical to the one found in the natural pseudotachylytes. Based on these experimental observations and assuming non-equilibrium melting, the preservation of a mineral, as a clast, in the melt appears to be controlled by its thermal shock properties as well as by its melting temperature. Since the mechanical effects of rupture propagation in these experiments were negligible, we conclude that, for Mw ≥ 6 earthquakes, (i) frictional slip and heating of the slipping zone plus (ii) thermomechanical properties of minerals, rather than fault rupture processes, control mineral comminution and clast survival in frictional melts.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3390886
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact