We study the evolution of the probability density of ensembles of iterates of the logistic map that advance toward and finally remain at attractors of representative dynamical regimes. We consider the mirror families of superstable attractors along the period-doubling cascade and of chaotic-band attractors along the inverse band-splitting cascade. We examine also their common aperiodic accumulation point. The iteration time progress of the densities of trajectories is determined via the action of the Frobenius-Perron (FP) operator. As a difference with the study of individual orbits, the analysis of ensembles of positions offers a viewpoint from which the nonlinear dynamical features of this iconic model can be better characterized in statistical-mechanical terms. The scaling of densities along the considered families of attractors conforms to a renormalization-group (RG) structure, while their entropies are seen to attain extrema at the fixed points of the RG flows. Additionally, this entropy as a function of the map control parameter displays the characteristic features of an equation of state of a thermal system undergoing a second-order phase transition. We discuss our results.

Logistic map trajectory distributions: Renormalization-group, entropy, and criticality at the transition to chaos

Baldovin F.;
2021

Abstract

We study the evolution of the probability density of ensembles of iterates of the logistic map that advance toward and finally remain at attractors of representative dynamical regimes. We consider the mirror families of superstable attractors along the period-doubling cascade and of chaotic-band attractors along the inverse band-splitting cascade. We examine also their common aperiodic accumulation point. The iteration time progress of the densities of trajectories is determined via the action of the Frobenius-Perron (FP) operator. As a difference with the study of individual orbits, the analysis of ensembles of positions offers a viewpoint from which the nonlinear dynamical features of this iconic model can be better characterized in statistical-mechanical terms. The scaling of densities along the considered families of attractors conforms to a renormalization-group (RG) structure, while their entropies are seen to attain extrema at the fixed points of the RG flows. Additionally, this entropy as a function of the map control parameter displays the characteristic features of an equation of state of a thermal system undergoing a second-order phase transition. We discuss our results.
2021
File in questo prodotto:
File Dimensione Formato  
5.0040544.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.85 MB
Formato Adobe PDF
2.85 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3387743
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact