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ABSTRACT

We study the evolution of the probability density of ensembles of iterates of the logistic map that advance toward and finally remain at
attractors of representative dynamical regimes. We consider the mirror families of superstable attractors along the period-doubling cascade
and of chaotic-band attractors along the inverse band-splitting cascade. We examine also their common aperiodic accumulation point. The
iteration time progress of the densities of trajectories is determined via the action of the Frobenius–Perron (FP) operator. As a difference with
the study of individual orbits, the analysis of ensembles of positions offers a viewpoint from which the nonlinear dynamical features of this
iconic model can be better characterized in statistical-mechanical terms. The scaling of densities along the considered families of attractors
conforms to a renormalization-group (RG) structure, while their entropies are seen to attain extrema at the fixed points of the RG flows.
Additionally, this entropy as a function of the map control parameter displays the characteristic features of an equation of state of a thermal
system undergoing a second-order phase transition. We discuss our results.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0040544

Already few decades ago, it had been a common general commen-
tary within the complex systems community that observations of
complex systems in nature appear to indicate, in the language of
nonlinear dynamics, that their conduct is as if they evolve at the
“edge of chaos.” Likewise, the same community nowadays often
shares the general commentary that the observations of complex
systems in nature seem to imply, in the language of statistical
mechanics, that they thrive in a state of “criticality.” Interestingly,
as we describe here, these two paradigms appear to be equivalent
at the transition to chaos displayed by the archetypal nonlin-
ear dynamical model, the quadratic map. To see this, we con-
sider two families of attractors, the supercycles along the period-
doubling cascade, and the band-splitting (Misiurewicz) points
along the chaotic-band cascade, together with their joint accu-
mulation point at the transition to and out of chaos. With their

invariant densities in hand (provided by the Frobenius–Perron
method), a familiar renormalization group picture appears, while
the uncomplicated task of evaluating their entropies is an oppor-
tunity to be taken. First of all, the fixed points are identified
as entropy extrema. For period one, the entropy vanishes reach-
ing its minimum possible value, while the entropy for the single
chaotic band attains the maximum value. The entropy for the
nontrivial fixed point at the transition to chaos is maximum for
all supercycles and minimum for all Misiurewicz points. Second,
the entropy of the invariant densities grows monotonically from
period one through all supercycles, and all Misiurewcz points
to the final single-band chaotic attractor. But most remarkably,
when the collection of entropies for the two families of attrac-
tors is viewed along the values of control parameter of the map,
the familiar pattern appears of a statistical-mechanical two-phase
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system separated by a continuous phase transition, an equation
of state containing a critical point.

I. INTRODUCTION

The conventional approach to study the dynamics of low-
dimensional nonlinear systems, e.g., iterated maps of the interval,
is to look at the asymptotic properties of single orbits.1–3 In contrast
here, we analyze both the transient and the asymptotic behavior of
the probability distribution, or density, associated with ensembles of
orbits. This change of perspective is comparable to that present in
the description of classical normal diffusion, in which tracking the
dynamics of single particles via the Langevin equation4 is reformu-
lated into a partial differential equation for the evolution of the prob-
ability density of finding a particle at a specific position and time, i.e.,
the Fokker–Planck equation.5 This substitution in object of study
helps to illuminate the inner workings behind statistical-mechanical
descriptions.6 Motivated by potential statistical-mechanical insight
gain, and as a difference with normal diffusion, here we look at the
evolution of the densities of trajectories that take place in situations
governed by nonlinear dynamics. We choose to examine the familiar
period-doubling route to chaos in dissipative systems together with
its companion sequence of chaotic-band splitting attractors.1–3 For
practical reasons, a convenient setting for our planned investigation
is the standard logistic map. Unless specifically stated, we describe
the evolution of densities of a uniformly distributed set of initial con-
ditions along the interval of definition of the map. As the trajectories
evolve toward the attractors, the densities advance likewise to a final
stage that reflects the distinct visiting order of attractor positions or
bands in unimodal maps.1–3 As anticipated, the known self-affine
properties displayed by these families of attractors1–3 manifest also
in their densities and we take advantage of this to formulate an
appropriate renormalization group (RG) transformation for which
the density at the RG nontrivial fixed point corresponds to the tran-
sition into or out of chaos. The densities for the trivial fixed points
are those for period one and single band attractors. But also the
entropies associated with the densities can be readily determined,
and these are found to be extrema for the RG fixed points. The over-
all picture obtained is that of a statistical-mechanical system in the
vicinity of a critical point.

Background recall. The density of trajectories ρt(x) at positions
x ∈ I and iteration time t under the action of a given map f(x)
defined for the phase-space interval I can be constructed directly
from an initial density by means of a linear operator approach. This
operator, known as the transfer or Frobenius-Perron operator,? acts
on arbitrary densities and drives them forward in time. It is defined
by the action

ρt(x) = L
(t)ρ0(x), (1)

which is written in the explicit form as

ρt(x) =
∫

I

δ[y − f(t)(x0)]ρ0(y) dy, (2)

where x = f(t)(x0) is f(x0) composed t times with itself. Equation (2)
is called the Frobenius–Perron equation and δ[y − f(t)(x0)] is the
singular kernel of its associated linear operator.6 Even though the

evolution of trajectories under f(x) is nonlinear, there is a linear
relation between densities via the integral operation. Together with
Eq. (2), we require

∫

f(t)(I)

ρt(x) dx =
∫

I

ρ0(x) dx

for arbitrary densities ρ0(x) of initial conditions distributed over I.
This is equivalent to the conservation of the total Lebesque measure
of I under f(x), or, in other words, the initial number of trajecto-
ries is preserved. We consider the relation above to be valid for the
dissipative case, as employed here.6,8

In Sec. II, we particularize the Frobenius–Perron approach
to the logistic map, and in Sec. III, we present the resultant den-
sities of ensembles of trajectories that first proceed toward and
then evolve within the superstable attractors, the band-splitting or
Misiurewicz points, and their common accumulation point, the
Feigebaum attractor.1–3 We indicate there the development of a
larger (than consecutive iteration t) time scale, of the form τ = N2n,
N = 1, 2, . . ., with n fixed (n indicates the order of the superstable
orbit of period 2n, or that of the Misiurewicz point when 2n bands
are about to appear). Then, we look at the scaling of these densities as
the accumulation point of the superstable cycles is approached. We
confirm the stationary character of the densities in the larger time
scale τ . In Sec. IV, the previous numerical results are reproduced via
a rescaling scheme that uses as starting input the smooth, invariant
distribution for the fully developed single-band attractor at the end
value of the map control parameter, known as the Ulam density.1–3

The rescaling procedure expresses the self-affinity that permeates
through the properties of the logistic and other quadratic maps and
reproduces sequentially the invariant densities at the band-splitting
points (and also those for the supercycles) in a quantitative way on
the time scale τ . Next, in Sec. V, we put together the properties of
the two families of attractors studied, including their common accu-
mulation point, into a renormalization group (RG) framework, such
that the densities flow toward two trivial fixed points, period one for
the periodic attractors and a single band for the chaotic attractors.
The density for the accumulation point at the transition into or out
of chaos corresponds to the nontrivial fixed point. Then we evalu-
ate the (Shannon) entropies of the densities along the two families
of attractors and observe that the entropy attains extreme values at
the RG fixed points,9,10 while the overall shape of the entropy and
its derivative as a function of the map control parameter display
the characteristics of an equation of state and the response function
of a statistical-mechanical system undergoing a second-order phase
transition. Finally, in Sec. VI, we summarize and discuss our results.

II. A FOKKER–PLANCK EQUATION FOR THE LOGISTIC

MAP

The normal iterative procedure of generating trajectories
xt, t = 0, 1, 2, . . . , from the logistic map,

fµ(x) = 1 − µx2, x ∈ [−1, 1], µ ∈ [0, 2], (3)

starting from an initial condition x0 at fixed value of the con-
trol parameter µ, resembles the description of fluid motion in the
Lagrangian frame of reference where xt+1 = 1 − µx2

t plays the role
of a Langevin equation.4 The change of perspective when looking
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at fluid motion through an Eulerian frame of reference involves
the time evolution of the density of particles as represented by
the Fokker–Planck equation.5 The parallel description to study the
dynamics contained in the logistic map centers on the transition
probability of trajectories between positions reached at consecutive
iteration times. This is

ρt(x) =
∫

dx′p(x, t|x′, t − 1)ρt−1(x
′), (4)

with x = 1 − µx′2. In our example, the conditional transition prob-
ability is given by the Dirac delta function

p(x, t|x′, t − 1) = δ(x − 1 + µx′2). (5)

Therefore, we have

ρt(x) =
∫ 1

−1

dx′δ(x − 1 + µx′2)ρt−1(x
′), (6)

which, after the change of variables y = 1 − µx′2 for x′ ∈ [0, 1] and
z = 1 − µx′2 for x′ ∈ [−1, 0], becomes

ρt(x) =
1

2
√

µ(1 − x)

[

ρt−1

(

ξµ(x)
)

+ ρt−1

(

−ξµ(x)
)]

, (7)

with ξµ(x) ≡
√

(1 − x)/µ and where x ∈ [1 − µ, 1] and ρt = 0 for
x ∈ (−1, 1 − µ). This is the Frobenius–Perron equation particu-
larized to the logistic map when written for consecutive iteration
times.

There is an important difference between the familiar linear
Fokker–Planck equation in fluid motion or diffusion problems and
the equation we obtained for the logistic map, Eq. (7), and this is
that the functional inverse of the logistic map is not unique. There-
fore, the “backwards” companion equation to Eq. (7), analogous to
reverse time in the Fokker–Planck equation, is obtained by inserting
in

ρt−1(x) =
∫ 1

1−µ

dx′p(x, t − 1|x′, t)ρt(x
′), (8)

the backward propagation of the probability density, with x = ±ξ ′
µ,

ξ ′
µ =

√
(1 − x′)/µ. Explicitly, the conditional transition probability

in Eq. (4) is a sum of two Dirac deltas

p(x, t − 1|x′, t) =
1

2
δ
(

x + ξ ′
µ

)

+
1

2
δ
(

x − ξ ′
µ

)

. (9)

Hence, we have the expression

ρt−1(x) =
∫ 1

1−µ

dx′
[

1

2
δ
(

x + ξ ′
µ

)

+
1

2
δ
(

x − ξ ′
µ

)

]

ρt(x
′) (10)

that yields

ρt−1(x) =

{

µxρt(1 − µx2), x ∈ [0, 1],

−µxρt(1 − µx2), x ∈ [−1, 0],
(11)

which is already normalized.

III. EVOLUTION OF DENSITIES OF TRAJECTORIES

TOWARD ATTRACTORS

A. Period doubling cascade

The family of superstable attractors or supercycles1,2 of the
logistic map, and in general unimodal maps, has become a standard
choice when describing dynamical properties along the period-
doubling cascade. The rapid convergence of trajectories into these
attractors (exponential of an exponential decay rate11) was a conve-
nient option in the early studies that revealed basic properties and
defined key quantities, such as the so-called diameters,1,2 and this in
turn have stimulated many subsequent developments through their
use. We select this family of attractors to determine densities of tra-
jectories via the Frobenius–Perron method. The control parameter
value for the supercycle of period 2n is denoted Sn, n = 1, 2, 3, . . .

In Fig. 1, we show numerical results for the solutions of the
Frobenius–Perron equation (7) when µ = S2 at early and moder-
ately large iteration times for an initially uniform distribution of
initial positions in the interval [−1, 1]. As observed there, only one
iteration is sufficient to wipe out uniformity and concentrate the tra-
jectories near x = 1. A second iteration divides the trajectories into
two groups around two positions of the attractor with the forma-
tion of one central gap, soon after the trajectories divide into four
groups located close to the four attractor positions separated by two
new gaps. The total of three gaps contain the three repellor posi-
tions present for period-four attractors. For all subsequent number
of iterations, the heights of the four peaks that express the popula-
tions of the four groups of trajectories alternate locations according
to the fixed order of visits of attractor positions in unimodal map
dynamics.1 For large iteration time t, the density is invariant when
observed at multiples of 22t.

Similarly, in Fig. 2, we show numerical results for the solu-
tions of Eq. (7) when µ = S3 at early and large iteration times for
an initially uniform distribution of initial positions in the interval
[−1, 1]. As seen before, uniformity is sharply erased at the first iter-
ation and trajectories cluster around x = 1. Trajectories split at the
second iteration into two groups centered around two attractor posi-
tions and create one central gap. Four groups of trajectories now
around four attractor positions appear at four iterations, while the
central gap divides into three gaps. Lastly, eight groups of trajec-
tories are formed on the eight attractor positions at iteration eight
separated by seven gaps. The final sharp delta peaks that form the
attractor separated by empty intervals are reached continuously for
larger iteration times. As before, the heights of the eight peaks, that
correspond to the populations of the eight groups of trajectories,
alternate locations according to the fixed order of visits of attrac-
tor positions in unimodal map dynamics.1 For large iteration time t,
the density appears invariant when observed at multiples of 23t.

For (all) larger periods, the solutions of Eq. (7) at µ = Sn,
n = 4, . . ., show a parallel iteration time development. This is to
recapitulate the formation of 2k, k = 0, 1, 2, 3, . . . , n, peaks and the,
2k − 1, k = 0, 1, 2, 3, . . . , n − 1, gaps between them sequentially at
times t = 2k, k = 0, 1, 2, 3, . . . , n. The large time t → ∞ density is
the sum of 2n delta functions centered at the attractor positions
xi, i = 1, . . . , n. The density vanishes in the intervals between these
positions that contain the 2n − 1 repellor positions. The amplitudes
of the delta functions are in general dependent on the initial
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FIG. 1. Evolution of an initially uniform
density of positions in the interval [−1, 1]
when µ = S2. (a) First iteration, the
density accumulates sharply around
x = 1. (b) Second iteration, another
peak forms around x ∼ −0.3. (c)
Fourth iteration, there are four peaks
centered on the final attractor points
x ∼ −0.31, 0, 0.87, and1. (d) Thirty-two
iterations, we observe already a good
approximation of the final density consis-
ting of four delta functions.

distribution of initial conditions (uniform in our case) for the
ensemble of trajectories. These amplitudes retain forever an itera-
tion time dependence as they are circulated among the 2n attractor
positions according to the prescribed order of visits in the dynamics
of unimodal maps.1–3 The density is invariant when the alternative
time scale τ = N2n, N = 1, 2, . . ., is adopted. The two time scales t
and τ diverge from each other exponentially as n → ∞.

B. Chaotic band-splitting cascade

The family of chaotic-band attractors where bands are on the
point to split, known also as Misiurewicz points,3 is a convenient
option introduced here to determine densities of chaotic trajecto-
ries via the Frobenius–Perron method. The band-splitting sequence

for µ > µ∞ is the chaotic equivalent to the period-doubling super-
cycles for µ < µ∞. For recent developments assisted through their
use, see, for example, Refs. 12 and 13. The determination of the
band widths at the nth Misiurewicz point is facilitated by the cir-
cumstance that the set of band edge points, that we denote by {en,k}
∈ [1 − µ, 1], k = 1, . . . , 3 ∗ 2n−1, correspond to positions of the tra-
jectory initiated at the position of the map x = 0, i.e., en,k = fkMn

(0),
where Mn, n = 1, 2, 3, . . ., is the control parameter value for the
2n-band Misiurewicz point. Orbits initiated at position x = 0 for
µ = Mn are eventually periodic,14 which means they posses a tran-
sient called preperiod after which they are periodic. In the for-
mer, 3 ∗ 2n−1 is the sum of the preperiod q = 2n and the period
p = 2n−1 of each Mn. Therefore, en,1 = 1, en,2 = 1 − Mn, en,3 = 1
− Mne2

n,2 = 1 − Mn(1 − Mn)
2, and so on. The positions of the

FIG. 2. Evolution of an initially uniform
density of positions in the interval [−1, 1]
when µ = S3. (a) First iteration, the
density rises steeply around x = 1. (b)
Second iteration, a second peak forms
around x ∼ −0.3. (c) Fourth iteration,
two more peaks develop between the
former two. (d) Eighth iteration, four addi-
tional peaks appear, there are eight peaks
centered on the final attractor points
x ∼ −0.38, − 0.33, 0, 0.12, 0.80, 0.85,
0.98, and 1. (e) 16th iteration, the gaps
between the attractor positions develop
further. (f) 256th iteration, we observe
already a good approximation of the final
density consisting of eight delta functions.
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FIG. 3. Evolution of an initially uniform
density of positions in the interval [−1, 1]
whenµ = M2. (a) First iteration, the den-
sity accumulates sharply around x = 1.
(b) Second iteration, another peak forms
around x ∼ −0.4. (c) Fourth iteration,
there are four peaks delineating the edges
of the two final bands separated by a
gap. (d) Thirty-two iterations, we observe
already a good approximation of the final
density that shows the twin u-shaped form
at each of the two bands.

points en,k correspond to the peaks of the density in the final panels
in Figs. 3 and 4. Following the same procedure for arbitrary values
of µ defines the polynomials

Pn(µ) = 1 − µP2
n−1(µ), P0 = 1, µ ∈ [0, 2] (12)

of order 2n − 1 that are sometimes referred to as shade curves or
critical polynomials,14 which we will call here simply µ-polynomials
or µ-curves. They conform the loci of all the band edges, and super-
cycle and periodic window’s attracting positions (see Fig. 7), a fact
that will be employed in the construction of the Renormalization-
Group (RG) transformation.

Figure 3 shows numerical results for the solutions of the Frobe-
nius–Perron equation (7) when µ = M2 at early and larger iteration
times for an initially uniform distribution of initial positions in the

interval [−1, 1]. Again, only one iteration is sufficient to wipe out
uniformity and concentrate the trajectories near x = 1. At a second
iteration appears a second peak that gives the distribution a single
u-shaped form. At the fourth iteration, the trajectories are divided
into two groups forming u-shaped densities separated by one cen-
tral gap. A few more iterations lead to a density that approximates
the final form for this chaotic band attractor. For large iteration time
t, the density is invariant when observed at multiples of 22t.

Similarly, in Fig. 4, we show numerical results for the solutions
of Eq. (7) when µ = M3 at early and large iteration times for an ini-
tially uniform distribution of initial positions in the interval [−1, 1].
Again, the same sequential pattern is observed, fast departure from
uniformity with clustering first at x = 1 and then at the other edge
of the main band, central gap formation, and splitting of the two

FIG. 4. Evolution of an initially uni-
form density of positions in the inter-
val [−1, 1] when µ = M3. (a) First iter-
ation, the density rises steeply around
x = 1. (b) Second iteration, a sec-
ond peak forms around x ∼ −0.4. (c)
Fourth iteration, two more peaks develop
between the former two forming two
bands separated by a central gap. (d)
Eighth iteration, four additional peaks
appear, leading to four bands separated
by three gaps. (e) 16th iteration, the gaps
between the attractor positions develop
further while four new peaks give the den-
sities the characteristic Misiurewicz-point
repeated twin u-shaped form. (f) 32nd iter-
ation, we observe already a good approx-
imation of the final density.
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bands. Next, the same events leading now to three gaps separating
four bands, each exhibiting the characteristic double u-shaped den-
sity of the Misiurewicz points. For large iteration time t, the density
is invariant when observed at multiples of 23t.

C. Density of iterates at the Feigenbaum point

The evolution via sequential gap formation of uniformly dis-
tributed ensemble of trajectories toward supercycle and Misiurewicz
point attractors display a “recapitulation” property,13,15,16 i.e., pro-
gression toward 2n-periodic or 2n-band chaotic attractors repeats
successively that toward those attractors with 2k, k = 0, 1, 2, . . . ,
n − 1. As described above, we have seen that this property appears
reflected in the time development of their densities. When µ = µ∞,
recapitulation never ends and the attractor becomes a multifractal
set while the density becomes an infinite set of delta functions placed
at the attractor positions (see Fig. 9 below). At the accumulation
point, the difference between the two time scales t and τ diverges
and advancing by successive iterations does not reach the complete
invariant density. A different option is to place a uniform distribu-
tion on the multifractal attractor (say one initial condition on each
point in Fig. 9) and add a position at infinity, x = x∞, with the rule
fµ∞(x∞) = 0. This distribution remains invariant in the iteration
time scale t.

IV. SELF-AFFINITY OF FAMILIES OF INVARIANT

DENSITIES

A. Stationary density for µ =2

The invariant density of the Ulam map f(x) = 1 − 2x2 has
been known for some time.1–3 For the logistic map in the fully
chaotic regime µ = 2, the stationary solution ρt(x) = ρt+1(x) is the
u-shaped function

ρ(x) =
1

π
√

1 − x2
, (13)

as it satisfies

ρ(x) =
1

2
√

µ(1 − x)

[

ρ

(
√

1 − x

µ

)

+ ρ

(

−

√

1 − x

µ

)]

(14)

or

ρ(x) =
ρ
(√

1−x
µ

)

√
µ(1 − x)

, (15)

since Eq. (13) is symmetric around x = 0, ρ(−x) = ρ(x).

B. Scaling for Misiurewicz points

Now, that we have determined numerically the invariant den-
sities (in the large time scale τ = N2n, N = 1, 2, . . . ,) at the Misi-
urewicz points, we will reproduce them quantitatively by means of a

scaling argument. Consider the affine transformation

y ≡ bx + c, 0 < b < 1, 1 − µ < c < 1 (16)

applied to the density ρX(x), we have

ρY(y) =
∫

dxρX(x)δ(y − bx − c)

=
1

b
ρX

(

y − c

b

)

. (17)

When ρX(x) is the Ulam invariant density [Eq. (13)], we obtain

ρ(x) =
1

π
√

b2 − (x − c)2
. (18)

Considering that at a Misiurewicz point each chaotic band
splits into two new bands, and that correspondingly the invariant
density duplicates the number of u-shaped elements in it, then we
assume that each u-shaped element at Mn gets a proportion of 2−n

of the total measure at µ = 2. So, at the first Misiurewicz point, the
scaling ansatz gives

ρM1(x) =



















(

2π
√

b2
1,1 − (x − c1,1)

2

)−1

, x ∈ [e1,3, e1,1],

(

2π
√

b2
1,2 − (x − c1,2)

2

)−1

, x ∈ [e1,2, e1,3],

(19)

where we introduce the notation cn,i, bn,i with n indicating the gen-
eration of the band-splitting cascade, and the second index denotes
the ith u-shaped density element i = min(l, s) where l, s = 1, . . . , 3 ∗
2n−1 are the indices of the corresponding edges en,l, en,s of its support,
that we denote by Un,i = [en,l, en,s] following the same definition of
its indices as above. In this way, cn,i = (en,l + en,s)/2. The contraction
parameters bn,i = |en,l − en,s|/2 are central to the RG transformation
that we elaborate in Sec. V.

Using the previous notation, we write the expression for the
density at each Misiurewicz point Mn as the Feigenbaum attractor is
approached when n → ∞. The ith density element of the measure
at the nth Misiurewicz point, with support Un,i has the form

ρn,i(x) =
1

2nπ

√

b2
n,i − (x − cn,i)

2
. (20)

Note that b2
n,i − (x − cn,i)

2 ≥ 0 for x ∈ Un,i. In Fig. 5 (Fig. 6), we
show the agreement between the numerically determined and the
scaled and duplicated invariant densities for the first (second) Misi-
urewicz point as given by Eq. (20).

V. RENORMALIZATION-GROUP TRANSFORMATION

As it will be highlighted below, the Feigenbaum point µ∞ can
be interpreted as the nontrivial fixed point of discrete RG transfor-
mation. The action of the transformation maps µ 6= µ∞ toward one
of the trivial fixed points: either toward µ = 0 if µ ∈ {Sn} or µ = 2
if µ = {Mn}. For the sequence {Mi} of Misiurewicz points, the direc-
tion of the RG flow is Mn → Mn−1, and thus, it is given by the inverse

Chaos 31, 033112 (2021); doi: 10.1063/5.0040544 31, 033112-6

© Author(s) 2021

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 5. Invariant density for the first Misiurewicz point M1.
Left panel, numerically determined from the Frobenius–Perron
equation. Right panel, obtained from scaling and duplication of
the Ulam density in Eq. (13) according to Eq. (19).

of our self-affine transformation

Y(x) = βn,1x + γn,1, (21)

with Y(x) = y−1(x), βn,1 = 1/bn,1, and γn,1 = −cn,1/bn,1. For sim-
plicity and clarity in the derivation, let us start by focusing on the
intervals Un,1 = [en,q+1, en,1 = 1] (with q = 2n the preperiod of Mn,
see Sec. III B). The RG transformation maps the interval Un,1 onto
Un−1,1 through Eq. (21). In order to realize this mapping, notice first
that all the intervals Un,1 share the same boundary at x = 1 = en,1.
Mapping this edge with Eq. (21), en+1,1 → en,1, gives the relation

γn,1 = 1 − βn,1. (22)

For mapping the edges en,q+1, it is illustrative to write them first
in terms of the µ-polynomials defined by Eq. (12) (see also Fig. 7),
evaluated at µn = Mn,

en,q+1 = Pq(µn),

with q = 2n. The mapping en,q+1 → en,q∗+1 (with q∗ = 2n−1) corre-
sponds then to Pq(µn) → Pq∗(µn−1) or equivalently to the equation
Y(Pq(µn)) = Pq∗(µn−1), whose solution for βn,1 is

βn,1 =
1 − Pq∗(µn−1)

1 − Pq(µn)
. (23)

Notice that Eq. (23) corresponds to the ratio of the lengths
| · | of successive intervals |Un−1,1|/|Un,1|, and we have obtained

it through an RG argument. The asymptotic value limn→∞ βn,1

= β∞,1 is estimated with Eq. (23) up to the 6th Misiurewicz point
as β6,1 = (1 − P32(M5))/(1 − P64(M6)) ∼ 6.263 868 408 145 97 · · · .
This value has a discrepancy of only 0.011% with respect to
the square of a well-known quantity: α2 = 6.264 547 831 212 568,
α = −2.502 907 875 095 . . . the universal Feigenbaum constant17

giving the local scaling around the maximum of all quadratic uni-
modal maps at the accumulation point of the period-doubling
scenario.

In Fig. 8, we show the monotone convergence of the numerical
estimate of βn,1 to α2 as given by Eq. (23).

In a similar way, now we obtain the parameter βn,q for the
symmetric intervals centered at x = 0, Un,q = [en,q∗+q, en,q], with
en,q > 0, en,q∗+q < 0 and again q∗ = 2n−1, q = 2n. This time
γn,q = 0, and by symmetry en,q = −en,q∗+q hence |Un,q| = 2en,q. The
edge en,q can be written in terms of the µ-polynomials simply
as en,q = Pq−1(µn) . With this, solving the RG equation Y(Pq−1

(µn)) = Pq∗−1(µn−1) for βn,q gives

βn,q =
Pq∗−1(µn−1)

Pq−1(µn)
. (24)

By performing the corresponding numerical evaluations of
Eq. (24) for µn = {M1, M2, . . . , M6}, we get β6,64 = −2.502 571 236
832 08; this means a discrepancy of 0.013% with respect to α.
Figure 8 shows the values of the transformation coefficients βn,1

FIG. 6. Invariant density for the second Misiurewicz pointM2.
Left panel, numerically determined from the Frobenius–Perron
equation. Right panel, obtained from scaling and duplication of
the density in Eq. (19) according to the general expression in
Eq. (20).
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FIG. 7. Bifurcation diagram of the logistic map with superimposedµ-polynomials
f nµ(0) = Pn(µ) = 1 − µP2

n−1(µ), P0 = 1 for n = 0, 1, 2, 3, and4, outlining

the bifurcation diagram. We indicate with vertical lines the intervals Un,i for
n = 1 and 2, i = 1, 1, 2, and 4, corresponding to the last steps on the discrete
RG for µ ∈ {Mn}. The dotted vertical line indicates µ∞ = 1.401 155 189 092.

for the first few Mn as they converge to the limiting value limn→∞
βn,1 = α2. Our arguments for the derivation of the RG transforma-
tion and the numerical evidence for the convergence of βn,1 → α2

and βn,q → α as n is increased enable us to conclude with confidence
that in the limit n → ∞,

β∞,q = α, (25)

β∞,1 = α2. (26)

The asymptotic values given above are naturally expected from
the local scaling at µ∞ around x = 0 and x = 1 for β∞,q and β∞,1 ,
respectively, as given by the (recirpocal of) Feigenbaum’s universal
trajectory scaling function1,18 1/σ(x = 1) = α2, indicating the most

FIG. 8. Convergence of the expansion coefficients βn,1 to the value β∞,1

= α2 = 6.264 547 831 217 037 . . ., indicated with a dashed horizontal line. The
solid circles correspond to the first six control parameter values at Misiurewicz
points. The line joining the points is only a guide to the eye.

crowded region of the multifractal attractor, and 1/σ(x = 0) = α

being the sparsest. This direct connection with the function 1/σ(x)
provides an even more interesting interpretation to the asymp-
totic values β∞,i and invites its reformulation as the function β(x)
= 1/σ(x) in terms of the continuous variable x = i/p with p = 2n−1

the period of Mn, just in the way it is done for 1/σ(x), thus pro-
viding a new way to obtain 1/σ(x) approaching form µ > µ∞. The
designed RG transformation works also for µ < µ∞, i.e., at the
sequence of supercycle attractors µ ∈ {Sn}.

A. Renormalization group, entropy, and criticality

Instead of following the customary analytical format for the
functional composition renormalization group (RG) procedure
applied to the period doubling cascade,1 we follow a graphical rep-
resentation that facilitates its extension to the collection of the
invariant densities we have already determined. Then, we look at
the entropy associated with them, and after this, we remark on a
statistical-mechanical critical point perspective of the Feigembaum
accumulation point and its neighborhood.

In Fig. 9, we show the absolute values of positions in logarith-
mic scales of the first 1000 iterations for the trajectory initiated at x0

when µ = µ∞. We observe in this figure that the positions appear
arranged into horizontal bands separated by gaps, all bands of equal
widths and all gaps of equal widths (seen more clearly defined for
large t). The top band of positions contain 1/2 of the positions, the
next band 1/4 of the positions, and so on, the nth band 2−n positions.
The RG transformation is as follows: (i) Eliminate the top band, all
positions with odd iteration times. This is half of the multifractal
attractor. (ii) Then shift the remaining positions to the left a dis-
tance ln 2 and up a distance ln α. The result is that one recovers
the same figure when µ = µ∞. Repeat the operation any number
of times. This is the nontrivial fixed point. Elimination of the top

FIG. 9. Trajectory with initial condition x = 0 at the Feigenbaum attractor µ∞
in absolute values and logarithmic scales. From this visualization of this orbit, it
is straightforward to see how the absolute values of the positions group: All the
odd iterates group to form the top band around x = 1 and the rest follow different
groupings into subsequent bands. We can appreciate also how subsequences
with power law scaling are formed. Of special interest is the time subsequence
corresponding to the powers {2k}. See text.
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band is the same as functional composition, so that the operations
above correspond to the original RG. If µ is less than µ∞, say we
are at a supercycle, then the repeated RG operations lead to period
one, one of the trivial fixed points. If µ is greater than µ∞, say we
are at a Misiurewicz point, then the repeated RG operations lead to
one chaotic band, the other trivial fixed point. The RG in our plan
is to do the same geometrical operations with the invariant densi-
ties obtained from the Frobenius–Perron, or, equivalently, from the
self-affine property. The (only) relevant variable (in RG language)
is the difference 1µ ≡ µ − µ∞, and it is similar to the temperature
distance to the critical point in thermal systems. The RG relevant
variables need to be set to zero in order to reach the nontrivial RG
fixed point, the accumulation point at µ∞. Otherwise, the transfor-
mation flows toward the trivial RG fixed points, in our case period
one or one chaotic band.

B. A renormalization group scheme for invariant

densities

The renormalization scheme operating on the invariant dis-
tributions at Misiurewicz points consists on folding each pair of
adjacent u-shaped elements into one u-shaped unit followed by
elimination of the gaps between them. Figure 6 for M2 becomes
Fig. 5 for M1 under this transformation. The RG transformation
works inversely with respect to the affine transformation in Sec. IV.
The RG transformation for the (multi-delta function) invariant dis-
tributions at the supercycle attractors consists of merging pairs of
their latest generation of delta functions into single ones, therefore
eliminating the gaps between them and resulting into the invariant
distribution of the previous supercycle. Figure 2(f) for S3 becomes
Fig. 1(d) for S2 under this transformation. Recall that the distri-
butions for Misiurevicz Points Mk and supercycle points Sk are
invariant in the time scale τ = N2k, N = 1, 2, . . ., k fixed, but show a
cyclical pattern along iteration times t, one cycle covered through
t = N2k, N2k + 1, N2k + 2, . . . , N2k + 2k, N fixed. This, of course,
after the transient behavior is over and only the asymptotic solution
of the FP equation is observed.

C. Entropy and phase transition

The Shannon entropy

Sµk
= −

∫ 1

−1

dxρµk
ln ρµk

(x) (27)

associated with the invariant densities ρµk
at the families of super-

cycle attractors µk = Sk and Misiurewicz points µk = Mk we have
determined can be readily obtained. These are shown in Fig. 11
as a function of the control parameter distance to the accumu-
lation point µ = µ∞. There we see behavior reminiscent of the
entropy below, at, and above the critical temperature of a ther-
mal system presenting ordered and disordered phases separated
by a phase transition. However here, we are following the entropy
of ensembles of positions between two distinctive behaviors: The
regular motion associated with the period-doubling cascade and
irregular motion associated with the chaotic band-splitting cascade.
The entropy presents a sudden increase at transition from periodic
motion to chaos. The logistic map on its route to chaos by either

FIG. 10. Flow diagram of the renormalization group (RG) transformation. The RG
transformation applied to any Misiurewicz point Mk densities (1µ > 0) leads to
the trivial fixed point that represents the single band Ulam distribution, denoted by
the right full circle. On the other hand, the RG transformation applied to any super-
cycle Sk density (1µ < 0) ends up at the trivial fixed point represented by the
single delta function for period one, denoted by the left full circle. The non-trivial
fixed point corresponds to the density made of an infinite set of delta functions
located each at the positions shown in Fig. 9, denoted the central full circle
(1µ = 0). See text.

period-doubling or band splitting out of chaos can be viewed as a
macroscopic system approaching a phase transition by a succession
of equilibrium states.

If we recall that the RG trivial fixed points are the period-
one supercycle and the single-band chaotic Ulam attractor and that
the RG nontrivial fixed point is their common accumulation point
at µ∞ we notice that these points are also entropy extrema. The
entropy at µ∞ is maximum with respect to all periodic attractors
and a minimum with respect to all chaotic attractors. This evidence
reaffirms the claim advanced in past works19 that the fixed points
of the RG approach are always related to entropy extrema, with the
all-important nontrivial fixed point as the saddle point. See Fig. 10.

To visualize further the parallelism with a thermal system,
we calculated from the data in Fig. 11 the quantity that would
correspond to a specific heat or susceptibility,

χ = µ−1

∣

∣

∣

∣

∂S

∂µ

∣

∣

∣

∣

. (28)

In Fig. 12, we can appreciate how χ , as defined above, diverges
at the onset of chaos.

FIG. 11. Entropy vs control parameter value. The red, dotted vertical line repre-
sents the control parameter value µ∞ of the transition to chaos, whereas each
dot corresponds to a member of the sequences of either superstable orbits (left
to the dotted line) or the band-splitting cascade (to the right of the dotted line).
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FIG. 12. Susceptibility χ calculated according to χ = µ−1| ∂S

∂µ
| vs reduced dis-

tance in control parameter 1µ/µ∞. The characteristic divergence at a critical
point is clearly appreciated at transition to chaos 1µ = 0.

VI. SUMMARY AND DISCUSSION

We examined the properties of the logistic map through the
use of the Frobenius–Perron (FP) equation. We solved this equation
numerically for both the first dozen supercycles along the period-
doubling cascade and the first dozen Misiurewicz points along
the chaotic band-splitting cascade of attractors. In both cases, we
observed a fast convergence to the final dynamical cyclical rep-
etition. As a starting point, we chose each time a uniform dis-
tribution of initial conditions in the interval of definition of the
map. As expected when working with supercycles, we observed
very fast approach of the FP densities to their limiting form for
trajectories inside the attractors. But this was also the case for
the Misiurewicz points. We would expect to have observed a dis-
tinctively slower approach for the case of the pitchfork bifurca-
tion points, while from our current experience we cannot indi-
cate what family of chaotic attractors, if any, would exhibit slow
approach.

Only the Ulam distribution for the chaotic single band when
µ = 2 and the single delta distribution for period one attractors
are invariant in the consecutive iteration time scale t. All the dis-
tributions for Misiurewicz points Mn and supercycles Sn become
invariant on the consecutive cycle time scale τ = N2n, N = 1, 2, . . .,
n fixed. The two scales diverge from each other when the accumu-
lation point of both families of attractors is approached, and so, the
observation of an invariant density becomes increasingly unreach-
able. But this is not necessarily so if the set of initial conditions for
the ensemble of trajectories is suitably chosen. A uniform distribu-
tion of initial conditions placed only in the attractor positions leads
to an invariant density in the time scale t.

The invariant distributions obtained numerically from the FP
equation were shown to be quantitatively reproduced via a self-
affine transformation with mirror duplication of either the Ulam
distribution for all Misiurewicz points or of a single delta func-
tion for all supercycles. In addition to this, a renormalization group
(RG) transformation on the invariant densities defined as the reverse
self-affine transformation with merging of mirror elements was

introduced such that the RG flows towards two trivial fixed points
that represent the distributions of a single fully chaotic band and
of a single periodic point. The nontrivial fixed point distribu-
tion is an infinite set of delta functions with multifractal support,
the Feigenbaum attractor. The only relevant variable is the con-
trol parameter distance to the period-doubling accumulation point,
1µ ≡ µ − µ∞.

The (Shannon) entropies S for the distributions of the supercy-
cles and the Misiurewicz points were determined and examined as
a function of 1µ. The outcome bears a strong resemblance with a
critical isotherm in a typical thermal system undergoing a continu-
ous phase transition. To affirm further this similarity, the quantity
that would correspond to a response function, χ = µ−1 |∂µ/∂S|,
was also calculated and was confirmed to display its characteristic
divergence at a critical point. The families of attractors that form
the bifurcation diagram of the quadratic maps show basically two
behaviors, periodic and chaotic, appearing along two main cascades
with increasing period or number of chaotic bands. They share the
same accumulation point. These types of attractors represent the two
“phases” separated by a “critical” point. It is well-known that this
feature is repeated an infinite number of times within the “periodic
windows” in the fractal bifurcation diagram.
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