Lysosomal storage disorders (LSDs) represent a complex and heterogeneous group of rare genetic diseases due to mutations in genes coding for lysosomal enzymes, membrane proteins or transporters. This leads to the accumulation of undegraded materials within lysosomes and a broad range of severe clinical features, often including the impairment of central nervous system (CNS). When available, enzyme replacement therapy slows the disease progression although it is not curative; also, most recombinant enzymes cannot cross the blood-brain barrier, leaving the CNS untreated. The inefficient degradative capability of the lysosomes has a negative impact on the flux through the endolysosomal and autophagic pathways; therefore, dysregulation of these pathways is increasingly emerging as a relevant disease mechanism in LSDs. In the last twenty years, different LSD Drosophila models have been generated, mainly for diseases presenting with neurological involvement. The fruit fly provides a large selection of tools to investigate lysosomes, autophagy and endocytic pathways in vivo, as well as to analyse neuronal and glial cells. The possibility to use Drosophila in drug repurposing and discovery makes it an attractive model for LSDs lacking effective therapies. Here, ee describe the major cellular pathways implicated in LSDs pathogenesis, the approaches available for their study and the Drosophila models developed for these diseases. Finally, we highlight a possible use of LSDs Drosophila models for drug screening studies.

Exploiting the potential of drosophila models in lysosomal storage disorders: Pathological mechanisms and drug discovery

Rigon L.
Funding Acquisition
;
Napoli B.
Writing – Original Draft Preparation
;
Tomanin R.
Supervision
;
Orso G.
Funding Acquisition
2021

Abstract

Lysosomal storage disorders (LSDs) represent a complex and heterogeneous group of rare genetic diseases due to mutations in genes coding for lysosomal enzymes, membrane proteins or transporters. This leads to the accumulation of undegraded materials within lysosomes and a broad range of severe clinical features, often including the impairment of central nervous system (CNS). When available, enzyme replacement therapy slows the disease progression although it is not curative; also, most recombinant enzymes cannot cross the blood-brain barrier, leaving the CNS untreated. The inefficient degradative capability of the lysosomes has a negative impact on the flux through the endolysosomal and autophagic pathways; therefore, dysregulation of these pathways is increasingly emerging as a relevant disease mechanism in LSDs. In the last twenty years, different LSD Drosophila models have been generated, mainly for diseases presenting with neurological involvement. The fruit fly provides a large selection of tools to investigate lysosomes, autophagy and endocytic pathways in vivo, as well as to analyse neuronal and glial cells. The possibility to use Drosophila in drug repurposing and discovery makes it an attractive model for LSDs lacking effective therapies. Here, ee describe the major cellular pathways implicated in LSDs pathogenesis, the approaches available for their study and the Drosophila models developed for these diseases. Finally, we highlight a possible use of LSDs Drosophila models for drug screening studies.
2021
File in questo prodotto:
File Dimensione Formato  
biomedicines-09-00268-v3.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3387235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
  • OpenAlex ND
social impact