Nociceptin/orphanin FQ controls several functions, including pain transmission, via stimulation of the N/OFQ peptide (NOP) receptor. Here we tested the hypothesis that NOP biased agonism may be instrumental for identifying innovative analgesics. In vitro experiments were performed with the dynamic mass redistribution label free assay and the NOP non-peptide agonists Ro 65-6570, AT-403 and MCOPPB. In vivo studies were performed in wild type and β-arrestin 2 knockout mice using the formalin, rotarod and locomotor activity tests. In vitro all compounds mimicked the effects of N/OFQ behaving as potent NOP full agonists. In vivo Ro 65-6570 demonstrated a slightly higher therapeutic index (antinociceptive vs. motor impairment effects) in knockout mice. However, all NOP agonists displayed very similar therapeutic index in normal mice despite significant differences in G protein biased agonism. In conclusion the different ability of inducing G protein vs. β-arrestin 2 recruitment of a NOP agonist cannot be applied to predict its antinociceptive vs. motor impairment properties.

Functional Selectivity Does Not Predict Antinociceptive/Locomotor Impairing Potencies of NOP Receptor Agonists

Malfacini, Davide;Calò, Girolamo
2021

Abstract

Nociceptin/orphanin FQ controls several functions, including pain transmission, via stimulation of the N/OFQ peptide (NOP) receptor. Here we tested the hypothesis that NOP biased agonism may be instrumental for identifying innovative analgesics. In vitro experiments were performed with the dynamic mass redistribution label free assay and the NOP non-peptide agonists Ro 65-6570, AT-403 and MCOPPB. In vivo studies were performed in wild type and β-arrestin 2 knockout mice using the formalin, rotarod and locomotor activity tests. In vitro all compounds mimicked the effects of N/OFQ behaving as potent NOP full agonists. In vivo Ro 65-6570 demonstrated a slightly higher therapeutic index (antinociceptive vs. motor impairment effects) in knockout mice. However, all NOP agonists displayed very similar therapeutic index in normal mice despite significant differences in G protein biased agonism. In conclusion the different ability of inducing G protein vs. β-arrestin 2 recruitment of a NOP agonist cannot be applied to predict its antinociceptive vs. motor impairment properties.
File in questo prodotto:
File Dimensione Formato  
JAN et al BANOP vivo FN 2021.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 4.18 MB
Formato Adobe PDF
4.18 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3387221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact