Rabbits are particularly sensitive to heat stress which can affect productive performance, with rabbit breed/line possibly playing a role on the response to this condition. The study aimed at evaluating the effect of different ambient temperatures on the live performance and carcass traits of growing rabbits divergently selected for total body fat content. The two genetic lines (Lean and Fat) were selected based on the total body fat content estimated by computer tomography during five generations. From birth to slaughter (13 weeks of age), the rabbits were housed in two rooms where the temperature was controlled with air conditioners: in the control room the average ambient temperature was 20 °C and in the high temperature room it was 28 °C. After weaning (35 d), 60 Lean and 60 Fat rabbits/room were housed by two in wire-mesh cages and fed ad libitum with commercial pellets. The BW and feed intake (FI) were measured at 5, 7, 9, 11 and 13 weeks of age to calculate the daily weight gain (DWG) and feed conversion ratio (FCR). Mortality was recorded daily. At the end of the experiment, rabbits were slaughtered and carcass traits were measured. Mortality was independent of temperature and line. The temperature significantly influenced the FI, DWG, BW and the fat deposits: they were lower at higher ambient temperature. The effect of temperature differed according to the rabbits' total body fat content. At control temperature, the FI (165 vs 155 g/day; P < 0.05) and FCR (4.67 vs 4.31; P < 0.05) were higher in Fat rabbits, which also had more perirenal (36.2 vs 23.1 g; P < 0.05) and scapular fat (10.8 vs 7.1 g; P < 0.05). At high temperature, no differences in fat depots (14.5 vs 9.8 g; 5.3 vs 3.5 g) were found between the two lines. It can be concluded that temperature × genetic line interaction had an important role in productive and carcass traits, as the effect of temperature differs between Lean and Fat rabbits.

Effect of ambient temperature on the productive and carcass traits of growing rabbits divergently selected for body fat content

DALLE ZOTTE A.;Cullere M.;
2021

Abstract

Rabbits are particularly sensitive to heat stress which can affect productive performance, with rabbit breed/line possibly playing a role on the response to this condition. The study aimed at evaluating the effect of different ambient temperatures on the live performance and carcass traits of growing rabbits divergently selected for total body fat content. The two genetic lines (Lean and Fat) were selected based on the total body fat content estimated by computer tomography during five generations. From birth to slaughter (13 weeks of age), the rabbits were housed in two rooms where the temperature was controlled with air conditioners: in the control room the average ambient temperature was 20 °C and in the high temperature room it was 28 °C. After weaning (35 d), 60 Lean and 60 Fat rabbits/room were housed by two in wire-mesh cages and fed ad libitum with commercial pellets. The BW and feed intake (FI) were measured at 5, 7, 9, 11 and 13 weeks of age to calculate the daily weight gain (DWG) and feed conversion ratio (FCR). Mortality was recorded daily. At the end of the experiment, rabbits were slaughtered and carcass traits were measured. Mortality was independent of temperature and line. The temperature significantly influenced the FI, DWG, BW and the fat deposits: they were lower at higher ambient temperature. The effect of temperature differed according to the rabbits' total body fat content. At control temperature, the FI (165 vs 155 g/day; P < 0.05) and FCR (4.67 vs 4.31; P < 0.05) were higher in Fat rabbits, which also had more perirenal (36.2 vs 23.1 g; P < 0.05) and scapular fat (10.8 vs 7.1 g; P < 0.05). At high temperature, no differences in fat depots (14.5 vs 9.8 g; 5.3 vs 3.5 g) were found between the two lines. It can be concluded that temperature × genetic line interaction had an important role in productive and carcass traits, as the effect of temperature differs between Lean and Fat rabbits.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3386963
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact