In the context of regularization methods for linear system identification, we introduce a new kernel design procedure that accounts for control objectives. We consider a model-reference control setup and assume data from one experiment is available. Exploiting the frequency response of the reference model, we design a new kernel that is able to extract the least amount of information from the data to the purpose of matching the desired closed-loop, with particular attention to user-defined frequency bands. Unlike the recently proposed CoRe algorithm, the proposed method is non-iterative and does not require any preliminary controller estimation. Simulation results on a benchmark example show that, when the model is used for control design, the proposed regularization procedure outperforms traditional kernel-based techniques as well as bias-shaping through data prefiltering.

Non-iterative control-oriented regularization for linear system identification

Chiuso A.;Zanini F.
2020

Abstract

In the context of regularization methods for linear system identification, we introduce a new kernel design procedure that accounts for control objectives. We consider a model-reference control setup and assume data from one experiment is available. Exploiting the frequency response of the reference model, we design a new kernel that is able to extract the least amount of information from the data to the purpose of matching the desired closed-loop, with particular attention to user-defined frequency bands. Unlike the recently proposed CoRe algorithm, the proposed method is non-iterative and does not require any preliminary controller estimation. Simulation results on a benchmark example show that, when the model is used for control design, the proposed regularization procedure outperforms traditional kernel-based techniques as well as bias-shaping through data prefiltering.
2020
2020 59th IEEE Conference on Decision and Control (CDC)
59th IEEE Conference on Decision and Control, CDC 2020
9781728174471
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3366947
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex 1
social impact