We discuss a Steklov-type problem for Maxwell's equations which is related to an interior Calderon operator and an appropriate Dirichlet-to-Neumann map. The corresponding Neumann-to-Dirichlet map turns out to be compact, and this provides a Fourier basis of Steklov eigenfunctions for the associated energy spaces. With an approach similar to that developed by G. Auchmuty for the Laplace operator, we provide natural spectral representations for the appropriate trace spaces, for the Calderon operator itself, and for the solutions of the corresponding boundary value problems subject to electric or magnetic boundary conditions on a cavity.

ON AN INTERIOR CALDERON OPERATOR AND A RELATED STEKLOV EIGENPROBLEM FOR MAXWELL'S EQUATIONS

Lamberti, PD
;
2020

Abstract

We discuss a Steklov-type problem for Maxwell's equations which is related to an interior Calderon operator and an appropriate Dirichlet-to-Neumann map. The corresponding Neumann-to-Dirichlet map turns out to be compact, and this provides a Fourier basis of Steklov eigenfunctions for the associated energy spaces. With an approach similar to that developed by G. Auchmuty for the Laplace operator, we provide natural spectral representations for the appropriate trace spaces, for the Calderon operator itself, and for the solutions of the corresponding boundary value problems subject to electric or magnetic boundary conditions on a cavity.
File in questo prodotto:
File Dimensione Formato  
Lamberti_Stratis.pdf

Accesso riservato

Descrizione: lamberti_stratis_2020
Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 426.24 kB
Formato Adobe PDF
426.24 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Postprint_Version_Lam_Str.pdf

accesso aperto

Descrizione: versione postprint degli autori
Tipologia: Accepted (AAM - Author's Accepted Manuscript)
Licenza: Accesso gratuito
Dimensione 365.88 kB
Formato Adobe PDF
365.88 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3358533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact