We discuss a Steklov-type problem for Maxwell's equations which is related to an interior Calderon operator and an appropriate Dirichlet-to-Neumann map. The corresponding Neumann-to-Dirichlet map turns out to be compact, and this provides a Fourier basis of Steklov eigenfunctions for the associated energy spaces. With an approach similar to that developed by G. Auchmuty for the Laplace operator, we provide natural spectral representations for the appropriate trace spaces, for the Calderon operator itself, and for the solutions of the corresponding boundary value problems subject to electric or magnetic boundary conditions on a cavity.
ON AN INTERIOR CALDERON OPERATOR AND A RELATED STEKLOV EIGENPROBLEM FOR MAXWELL'S EQUATIONS
Lamberti, PD
;
2020
Abstract
We discuss a Steklov-type problem for Maxwell's equations which is related to an interior Calderon operator and an appropriate Dirichlet-to-Neumann map. The corresponding Neumann-to-Dirichlet map turns out to be compact, and this provides a Fourier basis of Steklov eigenfunctions for the associated energy spaces. With an approach similar to that developed by G. Auchmuty for the Laplace operator, we provide natural spectral representations for the appropriate trace spaces, for the Calderon operator itself, and for the solutions of the corresponding boundary value problems subject to electric or magnetic boundary conditions on a cavity.File | Dimensione | Formato | |
---|---|---|---|
Lamberti_Stratis.pdf
Accesso riservato
Descrizione: lamberti_stratis_2020
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
426.24 kB
Formato
Adobe PDF
|
426.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Postprint_Version_Lam_Str.pdf
accesso aperto
Descrizione: versione postprint degli autori
Tipologia:
Accepted (AAM - Author's Accepted Manuscript)
Licenza:
Accesso gratuito
Dimensione
365.88 kB
Formato
Adobe PDF
|
365.88 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.