Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
The need for predictive capabilities greater than 95% with very limited false alarms are demanding requirements for reliable disruption prediction systems in tokamaks such as JET or, in the near future, ITER. The prediction of an upcoming disruption must be provided sufficiently in advance in order to apply effective disruption avoidance or mitigation actions to prevent the machine from being damaged. In this paper, following the typical machine learning workflow, a generative topographic mapping (GTM) of the operational space of JET has been built using a set of disrupted and regularly terminated discharges. In order to build the predictive model, a suitable set of dimensionless, machine-independent, physics-based features have been synthesized, which make use of 1D plasma profile information, rather than simple zero-D time series. The use of such predicting features, together with the power of the GTM in fitting the model to the data, obtains, in an unsupervised way, a 2D map of the multi-dimensional parameter space of JET, where it is possible to identify a boundary separating the region free from disruption from the disruption region. In addition to helping in operational boundaries studies, the GTM map can also be used for disruption prediction exploiting the potential of the developed GTM toolbox to monitor the discharge dynamics. Following the trajectory of a discharge on the map throughout the different regions, an alarm is triggered depending on the disruption risk of these regions. The proposed approach to predict disruptions has been evaluated on a training and an independent test set and achieves very good performance with only one tardive detection and a limited number of false detections. The warning times are suitable for avoidance purposes and, more important, the detections are consistent with physical causes and mechanisms that destabilize the plasma leading to disruptions.
A machine learning approach based on generative topographic mapping for disruption prevention and avoidance at JET
Pau, A.;Fanni, A.;Carcangiu, S.;Cannas, B.;Sias, G.;Murari, A.;Rimini, F.;Abduallev, S.;Abhangi, M.;Abreu, P.;Afzal, M.;Aggarwal, K. M.;Ahlgren, T.;Ahn, J. H.;Aho-Mantila, L.;Aiba, N.;Airila, M.;Albanese, R.;Aldred, V.;Alegre, D.;Alessi, E.;Aleynikov, P.;Alfier, A.;Alkseev, A.;Allinson, M.;Alper, B.;Alves, E.;Ambrosino, G.;Ambrosino, R.;Amicucci, L.;Amosov, V.;Sunden, E. Andersson;Angelone, M.;Anghel, M.;Angioni, C.;Appel, L.;Appelbee, C.;Arena, P.;Ariola, M.;Arnichand, H.;Arshad, S.;Ash, A.;Ashikawa, N.;Aslanyan, V.;Asunta, O.;Auriemma, F.;Austin, Y.;Avotina, L.;Axton, M. D.;Ayres, C.;Bacharis, M.;Baciero, A.;Baiao, D.;Bailey, S.;Baker, A.;Balboa, I.;Balden, M.;Balshaw, N.;Bament, R.;Banks, J. W.;Baranov, Y. F.;Barnard, M. A.;Barnes, D.;Barnes, M.;Barnsley, R.;Wiechec, A. Baron;Orte, L. Barrera;Baruzzo, M.;Basiuk, V.;Bassan, M.;Bastow, R.;Batista, A.;Batistoni, P.;Baughan, R.;Bauvir, B.;Baylor, L.;Bazylev, B.;Beal, J.;Beaumont, P. S.;Beckers, M.;Beckett, B.;Becoulet, A.;Bekris, N.;Beldishevski, M.;Bell, K.;Belli, F.;Bellinger, M.;Belonohy, E.;Ben Ayed, N.;Benterman, N. A.;Bergsaker, H.;Bernardo, J.;Bernert, M.;Berry, M.;Bertalot, L.;Besliu, C.;Beurskens, M.;Bieg, B.;Bielecki, J.;Biewer, T.;Bigi, M.;Bilkova, P.;Binda, F.;Bisoffi, A.;Bizarro, J. P. S.;Bjorkas, C.;Blackburn, J.;Blackman, K.;Blackman, T. R.;Blanchard, P.;Blatchford, P.;Bobkov, V.;Boboc, A.;Bodnar, G.;Bogar, O.;Bolshakova, I.;Bolzonella, T.;Bonanomi, N.;Bonelli, F.;Boom, J.;Booth, J.;Borba, D.;Borodin, D.;Borodkina, I.;Botrugno, A.;Bottereau, C.;Boulting, P.;Bourdelle, C.;Bowden, M.;Bower, C.;Bowman, C.;Boyce, T.;Boyd, C.;Boyer, H. J.;Bradshaw, J. M. A.;Braic, V.;Bravanec, R.;Breizman, B.;Bremond, S.;Brennan, P. D.;Breton, S.;Brett, A.;Brezinsek, S.;Bright, M. D. J.;Brix, M.;Broeckx, W.;Brombin, M.;Broslawski, A.;Brown, D. P. D.;Brown, M.;Bruno, E.;Bucalossi, J.;Buch, J.;Buchanan, J.;Buckley, M. A.;Budny, R.;Bufferand, H.;Bulman, M.;Bulmer, N.;Bunting, P.;Buratti, P.;Burckhart, A.;Buscarino, A.;Busse, A.;Butler, N. K.;Bykov, I.;Byrne, J.;Cahyna, P.;Calabro, G.;Calvo, I.;Camenen, Y.;Camp, P.;Campling, D. C.;Cane, J.;Cannas, B.;Capel, A. J.;Card, P. J.;Cardinali, A.;Carman, P.;Carr, M.;Carralero, D.;Carraro, L.;Carvalho, B. B.;Carvalho, I.;Carvalho, P.;Casson, F. J.;Castaldo, C.;Catarino, N.;Caumont, J.;Causa, F.;Cavazzana, R.;Cave-Ayland, K.;Cavinato, M.;Cecconello, M.;Ceccuzzi, S.;Cecil, E.;Cenedese, A.;Cesario, R.;Challis, C. D.;Chandler, M.;Chandra, D.;Chang, C. S.;Chankin, A.;Chapman, I. T.;Chapman, S. C.;Chernyshova, M.;Chitarin, G.;Ciraolo, G.;Ciric, D.;Citrin, J.;Clairet, F.;Clark, E.;Clark, M.;Clarkson, R.;Clatworthy, D.;Clements, C.;Cleverly, M.;Coad, J. P.;Coates, P. A.;Cobalt, A.;Coccorese, V.;Cocilovo, V.;Coda, S.;Coelho, R.;Coenen, J. W.;Coffey, I.;Colas, L.;Collins, S.;Conka, D.;Conroy, S.;Conway, N.;Coombs, D.;Cooper, D.;Cooper, S. R.;Corradino, C.;Corre, Y.;Corrigan, G.;Cortes, S.;Coster, D.;Couchman, A. S.;Cox, M. P.;Craciunescu, T.;Cramp, S.;Craven, R.;Crisanti, F.;Croci, G.;Croft, D.;Crombe, K.;Crowe, R.;Cruz, N.;Cseh, G.;Cufar, A.;Cullen, A.;Curuia, M.;Czarnecka, A.;Dabirikhah, H.;Dalgliesh, P.;Dalley, S.;Dankowski, J.;Darrow, D.;Davies, O.;Davis, W.;Day, C.;Day, I. E.;De Bock, M.;de Castro, A.;de la Cal, E.;de la Luna, E.;De Masi, G.;de Pablos, J. L.;De Temmerman, G.;De Tommasi, G.;de Vries, P.;Deakin, K.;Deane, J.;Agostini, F. Degli;Dejarnac, R.;Delabie, E.;den Harder, N.;Dendy, R. O.;Denis, J.;Denner, P.;Devaux, S.;Devynck, P.;Di Maio, F.;Di Siena, A.;Di Troia, C.;Dinca, P.;D'Inca, R.;Ding, B.;Dittmar, T.;Doerk, H.;Doerner, R. P.;Donne, T.;Dorling, S. E.;Dormido-Canto, S.;Doswon, S.;Douai, D.;Doyle, P. T.;Drenik, A.;Drewelow, P.;Drews, P.;Duckworth, Ph.;Dumont, R.;Dumortier, P.;Dunai, D.;Dunne, M.;Duran, I.;Durodie, F.;Dutta, P.;Duval, B. P.;Dux, R.;Dylst, K.;Dzysiuk, N.;Edappala, P. V.;Edmond, J.;Edwards, A. M.;Edwards, J.;Eich, Th.;Ekedahl, A.;El-Jorf, R.;Elsmore, C. G.;Enachescu, M.;Ericsson, G.;Eriksson, F.;Eriksson, J.;Eriksson, L. G.;Esposito, B.;Esquembri, S.;Esser, H. G.;Esteve, D.;Evans, B.;Evans, G. E.;Evison, G.;Ewart, G. D.;Fagan, D.;Faitsch, M.;Falie, D.;Fanni, A.;Fasoli, A.;Faustin, J. M.;Fawlk, N.;Fazendeiro, L.;Fedorczak, N.;Felton, R. C.;Fenton, K.;Fernades, A.;Fernandes, H.;Ferreira, J.;Fessey, J. A.;Fevrier, O.;Ficker, O.;Field, A.;Fietz, S.;Figueiredo, A.;Figueiredo, J.;Fil, A.;Finburg, P.;Firdaouss, M.;Fischer, U.;Fittill, L.;Fitzgerald, M.;Flammini, D.;Flanagan, J.;Fleming, C.;Flinders, K.;Fonnesu, N.;Fontdecaba, J. M.;Formisano, A.;Forsythe, L.;Fortuna, L.;Fortuna-Zalesna, E.;Fortune, M.;Foster, S.;Franke, T.;Franklin, T.;Frasca, M.;Frassinetti, L.;Freisinger, M.;Fresa, R.;Frigione, D.;Fuchs, V.;Fuller, D.;Futatani, S.;Fyvie, J.;Gal, K.;Galassi, D.;Galazka, K.;Galdon-Quiroga, J.;Gallagher, J.;Gallart, D.;Galvao, R.;Gao, X.;Gao, Y.;Garcia, J.;Garcia-Carrasco, A.;Garcia-Munoz, M.;Gardarein, J. -L.;Garzotti, L.;Gaudio, P.;Gauthier, E.;Gear, D. F.;Gee, S. J.;Geiger, B.;Gelfusa, M.;Gerasimov, S.;Gervasini, G.;Gethins, M.;Ghani, Z.;Ghate, M.;Gherendi, M.;Giacalone, J. C.;Giacomelli, L.;Gibson, C. S.;Giegerich, T.;Gil, C.;Gil, L.;Gilligan, S.;Gin, D.;Giovannozzi, E.;Girardo, J. B.;Giroud, C.;Giruzzi, G.;Gloeggler, S.;Godwin, J.;Goff, J.;Gohil, P.;Goloborod'ko, V.;Gomes, R.;Goncalves, B.;Goniche, M.;Goodliffe, M.;Goodyear, A.;Gorini, G.;Gosk, M.;Goulding, R.;Goussarov, A.;Gowland, R.;Graham, B.;Graham, M. E.;Graves, J. P.;Grazier, N.;Grazier, P.;Green, N. R.;Greuner, H.;Grierson, B.;Griph, F. S.;Grisolia, C.;Grist, D.;Groth, M.;Grove, R.;Grundy, C. N.;Grzonka, J.;Guard, D.;Guerard, C.;Guillemaut, C.;Guirlet, R.;Gurl, C.;Utoh, H. H.;Hackett, L. J.;Hacquin, S.;Hagar, A.;Hager, R.;Hakola, A.;Halitovs, M.;Hall, S. J.;Cook, S. P. Hallworth;Hamlyn-Harris, C.;Hammond, K.;Harrington, C.;Harrison, J.;Harting, D.;Hasenbeck, F.;Hatano, Y.;Hatch, D. R.;Haupt, T. D. V.;Hawes, J.;Hawkes, N. C.;Hawkins, J.;Hawkins, P.;Haydon, P. W.;Hayter, N.;Hazel, S.;Heesterman, P. J. L.;Heinola, K.;Hellesen, C.;Hellsten, T.;Helou, W.;Hemming, O. N.;Hender, T. C.;Henderson, M.;Henderson, S. S.;Henriques, R.;Hepple, D.;Hermon, G.;Hertout, P.;Hidalgo, C.;Highcock, E. G.;Hill, M.;Hillairet, J.;Hillesheim, J.;Hillis, D.;Hizanidis, K.;Hjalmarsson, A.;Hobirk, J.;Hodille, E.;Hogben, C. H. A.;Hogeweij, G. M. D.;Hollingsworth, A.;Hollis, S.;Homfray, D. A.;Horacek, J.;Hornung, G.;Horton, A. R.;Horton, L. D.;Horvath, L.;Hotchin, S. P.;Hough, M. R.;Howarth, P. J.;Hubbard, A.;Huber, A.;Huber, V.;Huddleston, T. M.;Hughes, M.;Huijsmans, G. T. A.;Hunter, C. L.;Huynh, P.;Hynes, A. M.;Iglesias, D.;Imazawa, N.;Imbeaux, F.;Imrisek, M.;Incelli, M.;Innocente, P.;Irishkin, M.;Ivanova-Stanik, I.;Jachmich, S.;Jacobsen, A. S.;Jacquet, P.;Jansons, J.;Jardin, A.;Jarvinen, A.;Jaulmes, F.;Jednorog, S.;Jenkins, I.;Jeong, C.;Jepu, I.;Joffrin, E.;Johnson, R.;Johnson, T.;Johnston, Jane;Joita, L.;Jones, G.;Jones, T. T. C.;Hoshino, K. K.;Kallenbach, A.;Kamiya, K.;Kaniewski, J.;Kantor, A.;Kappatou, A.;Karhunen, J.;Karkinsky, D.;Karnowska, I.;Kaufman, M.;Kaveney, G.;Kazakov, Y.;Kazantzidis, V.;Keeling, D. L.;Keenan, T.;Keep, J.;Kempenaars, M.;Kennedy, C.;Kenny, D.;Kent, J.;Kent, O. N.;Khilkevich, E.;Kim, H. T.;Kim, H. S.;Kinch, A.;King, C.;King, D.;King, R. F.;Kinna, D. J.;Kiptily, V.;Kirk, A.;Kirov, K.;Kirschner, A.;Kizane, G.;Klepper, C.;Klix, A.;Knight, P.;Knipe, S. J.;Knott, S.;Kobuchi, T.;Koechl, F.;Kocsis, G.;Kodeli, I.;Kogan, L.;Kogut, D.;Koivuranta, S.;Kominis, Y.;Koeppen, M.;Kos, B.;Koskela, T.;Koslowski, H. R.;Koubiti, M.;Kovari, M.;Kowalska-Strzeciwilk, E.;Krasilnikov, A.;Krasilnikov, V.;Krawczyk, N.;Kresina, M.;Krieger, K.;Krivska, A.;Kruezi, U.;Ksiazek, I.;Kukushkin, A.;Kundu, A.;Kurki-Suonio, T.;Kwak, S.;Kwiatkowski, R.;Kwon, O. J.;Laguardia, L.;Lahtinen, A.;Laing, A.;Lam, N.;Lambertz, H. T.;Lane, C.;Lang, P. T.;Lanthaler, S.;Lapins, J.;Lasa, A.;Last, J. R.;Laszynska, E.;Lawless, R.;Lawson, A.;Lawson, K. D.;Lazaros, A.;Lazzaro, E.;Leddy, J.;Lee, S.;Lefebvre, X.;Leggate, H. J.;Lehmann, J.;Lehnen, M.;Leichtle, D.;Leichuer, P.;Leipold, F.;Lengar, I.;Lennholm, M.;Lerche, E.;Lescinskis, A.;Lesnoj, S.;Letellier, E.;Leyland, M.;Leysen, W.;Li, L.;Liang, Y.;Likonen, J.;Linke, J.;Linsmeier, Ch.;Lipschultz, B.;Liu, G.;Liu, Y.;Lo Schiavo, V. P.;Loarer, T.;Loarte, A.;Lobel, R. C.;Lomanowski, B.;Lomas, P. J.;Lonnroth, J.;Lopez, J. M.;Lopez-Razola, J.;Lorenzini, R.;Losada, U.;Lovell, J. J.;Loving, A. B.;Lowry, C.;Luce, T.;Lucock, R. M. A.;Lukin, A.;Luna, C.;Lungaroni, M.;Lungu, C. P.;Lungu, M.;Lunniss, A.;Lupelli, I.;Lyssoivan, A.;Macdonald, N.;Macheta, P.;Maczewa, K.;Magesh, B.;Maget, P.;Maggi, C.;Maier, H.;Mailloux, J.;Makkonen, T.;Makwana, R.;Malaquias, A.;Malizia, A.;Manas, P.;Manning, A.;Manso, M. E.;Mantica, P.;Mantsinen, M.;Manzanares, A.;Maquet, Ph.;Marandet, Y.;Marcenko, N.;Marchetto, C.;Marchuk, O.;Marinelli, M.;Marinucci, M.;Markovic, T.;Marocco, D.;Marot, L.;Marren, C. A.;Marshal, R.;Martin, A.;Martin, Y.;Martin de Aguilera, A.;Martinez, F. J.;Martin-Solis, J. R.;Martynova, Y.;Maruyama, S.;Masiello, A.;Maslov, M.;Matejcik, S.;Mattei, M.;Matthews, G. F.;Maviglia, F.;Mayer, M.;Mayoral, M. L.;May-Smith, T.;Mazon, D.;Mazzotta, C.;McAdams, R.;McCarthy, P. J.;McClements, K. G.;McCormack, O.;McCullen, P. A.;McDonald, D.;McIntosh, S.;McKean, R.;McKehon, J.;Meadows, R. C.;Meakins, A.;Medina, F.;Medland, M.;Medley, S.;Meigh, S.;Meigs, A. G.;Meisl, G.;Meitner, S.;Meneses, L.;Menmuir, S.;Mergia, K.;Merrigan, I. R.;Mertens, Ph.;Meshchaninov, S.;Messiaen, A.;Meyer, H.;Mianowski, S.;Michling, R.;Middleton-Gear, D.;Miettunen, J.;Militello, F.;Militello-Asp, E.;Miloshevsky, G.;Mink, F.;Minucci, S.;Miyoshi, Y.;Mlynar, J.;Molina, D.;Monakhov, I.;Moneti, M.;Mooney, R.;Moradi, S.;Mordijck, S.;Moreira, L.;Moreno, R.;Moro, F.;Morris, A. W.;Morris, J.;Moser, L.;Mosher, S.;Moulton, D.;Murari, A.;Muraro, A.;Murphy, S.;Asakura, N. N.;Na, Y. S.;Nabais, F.;Naish, R.;Nakano, T.;Nardon, E.;Naulin, V.;Nave, M. F. F.;Nedzelski, I.;Nemtsev, G.;Nespoli, F.;Neto, A.;Neu, R.;Neverov, V. S.;Newman, M.;Nicholls, K. J.;Nicolas, T.;Nielsen, A. H.;Nielsen, P.;Nilsson, E.;Nishijima, D.;Noble, C.;Nocente, M.;Nodwell, D.;Nordlund, K.;Nordman, H.;Nouailletas, R.;Nunes, I.;Oberkofler, M.;Odupitan, T.;Ogawa, M. T.;O'Gorman, T.;Okabayashi, M.;Olney, R.;Omolayo, O.;O'Mullane, M.;Ongena, J.;Orsitto, F.;Orszagh, J.;Oswuigwe, B. I.;Otin, R.;Owen, A.;Paccagnella, R.;Pace, N.;Pacella, D.;Packer, L. W.;Page, A.;Pajuste, E.;Palazzo, S.;Pamela, S.;Panja, S.;Papp, P.;Paprok, R.;Parail, V.;Park, M.;Diaz, F. Parra;Parsons, M.;Pasqualotto, R.;Patel, A.;Pathak, S.;Paton, D.;Patten, H.;Pau, A.;Pawelec, E.;Soldan, C. Paz;Peackoc, A.;Pearson, I. J.;Pehkonen, S. -P.;Peluso, E.;Penot, C.;Pereira, A.;Pereira, R.;Puglia, P. P. Pereira;von Thun, C. Perez;Peruzzo, S.;Peschanyi, S.;Peterka, M.;Petersson, P.;Petravich, G.;Petre, A.;Petrella, N.;Petrzilka, V.;Peysson, Y.;Pfefferle, D.;Philipps, V.;Pillon, M.;Pintsuk, G.;Piovesan, P.;Pires dos Reis, A.;Piron, L.;Pironti, A.;Pisano, F.;Pitts, R.;Pizzo, F.;Plyusnin, V.;Pomaro, N.;Pompilian, O. G.;Pool, P. J.;Popovichev, S.;Porfiri, M. T.;Porosnicu, C.;Porton, M.;Possnert, G.;Potzel, S.;Powell, T.;Pozzi, J.;Prajapati, V.;Prakash, R.;Prestopino, G.;Price, D.;Price, M.;Price, R.;Prior, P.;Proudfoot, R.;Pucella, G.;Puglia, P.;Puiatti, M. E.;Pulley, D.;Purahoo, K.;Puetterich, Th.;Rachlew, E.;Rack, M.;Ragona, R.;Rainford, M. S. J.;Rakha, A.;Ramogida, G.;Ranjan, S.;Rapson, C. J.;Rasmussen, J. J.;Rathod, K.;Ratta, G.;Ratynskaia, S.;Ravera, G.;Rayner, C.;Rebai, M.;Reece, D.;Reed, A.;Refy, D.;Regan, B.;Regana, J.;Reich, M.;Reid, N.;Reimold, F.;Reinhart, M.;Reinke, M.;Reiser, D.;Rendell, D.;Reux, C.;Reyes Cortes, S. D. A.;Reynolds, S.;Riccardo, V.;Richardson, N.;Riddle, K.;Rigamonti, D.;Rimini, F. G.;Risner, J.;Riva, M.;Roach, C.;Robins, R. J.;Robinson, S. A.;Robinson, T.;Robson, D. W.;Roccella, R.;Rodionov, R.;Rodrigues, P.;Rodriguez, J.;Rohde, V.;Romanelli, F.;Romanelli, M.;Romanelli, S.;Romazanov, J.;Rowe, S.;Rubel, M.;Rubinacci, G.;Rubino, G.;Ruchko, L.;Ruiz, M.;Ruset, C.;Rzadkiewicz, J.;Saarelma, S.;Sabot, R.;Safi, E.;Sagar, P.;Saibene, G.;Saint-Laurent, F.;Salewski, M.;Salmi, A.;Salmon, R.;Salzedas, F.;Samaddar, D.;Samm, U.;Sandiford, D.;Santa, P.;Santala, M. I. K.;Santos, B.;Santucci, A.;Sartori, F.;Sartori, R.;Sauter, O.;Scannell, R.;Schlummer, T.;Schmid, K.;Schmidt, V.;Schmuck, S.;Schneider, M.;Schoepf, K.;Schworer, D.;Scott, S. D.;Sergienko, G.;Sertoli, M.;Shabbir, A.;Sharapov, S. E.;Shaw, A.;Shaw, R.;Sheikh, H.;Shepherd, A.;Shevelev, A.;Shumack, A.;Sias, G.;Sibbald, M.;Sieglin, B.;Silburn, S.;Silva, A.;Silva, C.;Simmons, P. A.;Simpson, J.;Simpson-Hutchinson, J.;Sinha, A.;Sipila, S. K.;Sips, A. C. C.;Siren, P.;Sirinelli, A.;Sjostrand, H.;Skiba, M.;Skilton, R.;Slabkowska, K.;Slade, B.;Smith, N.;Smith, P. G.;Smith, R.;Smith, T. J.;Smithies, M.;Snoj, L.;Soare, S.;Solano, E. R.;Somers, A.;Sommariva, C.;Sonato, P.;Sopplesa, A.;Sousa, J.;Sozzi, C.;Spagnolo, S.;Spelzini, T.;Spineanu, F.;Stables, G.;Stamatelatos, I.;Stamp, M. F.;Staniec, P.;Stankunas, G.;Stan-Sion, C.;Stead, M. J.;Stefanikova, E.;Stepanov, I.;Stephen, A. V.;Stephen, M.;Stevens, A.;Stevens, B. D.;Strachan, J.;Strand, P.;Strauss, H. R.;Strom, P.;Stubbs, G.;Studholme, W.;Subba, F.;Summers, H. P.;Svensson, J.;Swiderski, L.;Szabolics, T.;Szawlowski, M.;Szepesi, G.;Suzuki, T. T.;Tal, B.;Tala, T.;Talbot, A. R.;Talebzadeh, S.;Taliercio, C.;Tamain, P.;Tame, C.;Tang, W.;Tardocchi, M.;Taroni, L.;Taylor, D.;Taylor, K. A.;Tegnered, D.;Telesca, G.;Teplova, N.;Terranova, D.;Testa, D.;Tholerus, E.;Thomas, J.;Thomas, J. D.;Thomas, P.;Thompson, A.;Thompson, C. -A.;Thompson, V. K.;Thorne, L.;Thornton, A.;Thrysoe, A. S.;Tigwell, P. A.;Tipton, N.;Tiseanu, I.;Tojo, H.;Tokitani, M.;Tolias, P.;Tomes, M.;Tonner, P.;Towndrow, M.;Trimble, P.;Tripsky, M.;Tsalas, M.;Tsavalas, P.;Jun, D. Tskhakaya;Turner, I.;Turner, M. M.;Turnyanskiy, M.;Tvalashvili, G.;Tyrrell, S. G. J.;Uccello, A.;Ul-Abidin, Z.;Uljanovs, J.;Ulyatt, D.;Urano, H.;Uytdenhouwen, I.;Vadgama, A. P.;Valcarcel, D.;Valentinuzzi, M.;Valisa, M.;Olivares, P. Vallejos;Valovic, M.;Van De Mortel, M.;Van Eester, D.;Van Renterghem, W.;van Rooij, G. J.;Varje, J.;Varoutis, S.;Vartanian, S.;Vasava, K.;Vasilopoulou, T.;Vega, J.;Verdoolaege, G.;Verhoeven, R.;Verona, C.;Rinati, G. Verona;Veshchev, E.;Vianello, N.;Vicente, J.;Viezzer, E.;Villari, S.;Villone, F.;Vincenzi, P.;Vinyar, I.;Viola, B.;Vitins, A.;Vizvary, Z.;Vlad, M.;Voitsekhovitch, I.;Vondracek, P.;Vora, N.;Vu, T.;Pires de Sa, W. W.;Wakeling, B.;Waldon, C. W. F.;Walkden, N.;Walker, M.;Walker, R.;Walsh, M.;Wang, E.;Wang, N.;Warder, S.;Warren, R. J.;Waterhouse, J.;Watkins, N. W.;Watts, C.;Wauters, T.;Weckmann, A.;Weiland, J.;Weisen, H.;Weiszflog, M.;Wellstood, C.;West, A. T.;Wheatley, M. R.;Whetham, S.;Whitehead, A. M.;Whitehead, B. D.;Widdowson, A. M.;Wiesen, S.;Wilkinson, J.;Williams, J.;Williams, M.;Wilson, A. R.;Wilson, D. J.;Wilson, H. R.;Wilson, J.;Wischmeier, M.;Withenshaw, G.;Withycombe, A.;Witts, D. M.;Wood, D.;Wood, R.;Woodley, C.;Wray, S.;Wright, J.;Wright, J. C.;Wu, J.;Wukitch, S.;Wynn, A.;Xu, T.;Yadikin, D.;Yanling, W.;Yao, L.;Yavorskij, V.;Yoo, M. G.;Young, C.;Young, D.;Young, I. D.;Young, R.;Zacks, J.;Zagorski, R.;Zaitsev, F. S.;Zanino, R.;Zarins, A.;Zastrow, K. D.;Zerbini, M.;Zhang, W.;Zhou, Y.;Zilli, E.;Zoita, V.;Zoletnik, S.;Zychor, I.
2019
Abstract
The need for predictive capabilities greater than 95% with very limited false alarms are demanding requirements for reliable disruption prediction systems in tokamaks such as JET or, in the near future, ITER. The prediction of an upcoming disruption must be provided sufficiently in advance in order to apply effective disruption avoidance or mitigation actions to prevent the machine from being damaged. In this paper, following the typical machine learning workflow, a generative topographic mapping (GTM) of the operational space of JET has been built using a set of disrupted and regularly terminated discharges. In order to build the predictive model, a suitable set of dimensionless, machine-independent, physics-based features have been synthesized, which make use of 1D plasma profile information, rather than simple zero-D time series. The use of such predicting features, together with the power of the GTM in fitting the model to the data, obtains, in an unsupervised way, a 2D map of the multi-dimensional parameter space of JET, where it is possible to identify a boundary separating the region free from disruption from the disruption region. In addition to helping in operational boundaries studies, the GTM map can also be used for disruption prediction exploiting the potential of the developed GTM toolbox to monitor the discharge dynamics. Following the trajectory of a discharge on the map throughout the different regions, an alarm is triggered depending on the disruption risk of these regions. The proposed approach to predict disruptions has been evaluated on a training and an independent test set and achieves very good performance with only one tardive detection and a limited number of false detections. The warning times are suitable for avoidance purposes and, more important, the detections are consistent with physical causes and mechanisms that destabilize the plasma leading to disruptions.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3357379
Citazioni
ND
49
47
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.