Wearable continuous glucose monitoring (CGM) sensors are revolutionizing the treatment of type 1 diabetes (T1D). These sensors provide in real-time, every 1–5 min, the current blood glucose concentration and its rate-of-change, two key pieces of information for improving the determination of exogenous insulin administration and the prediction of forthcoming adverse events, such as hypo-/hyper-glycemia. The current research in diabetes technology is putting considerable effort into developing decision support systems for patient use, which automatically analyze the patient’s data collected by CGM sensors and other portable devices, as well as providing personalized recommendations about therapy adjustments to patients. Due to the large amount of data collected by patients with T1D and their variety, artificial intelligence (AI) techniques are increasingly being adopted in these decision support systems. In this paper, we review the state-of-the-art methodologies using AI and CGM sensors for decision support in advanced T1D management, including techniques for personalized insulin bolus calculation, adaptive tuning of bolus calculator parameters and glucose prediction.

Advanced diabetes management using artificial intelligence and continuous glucose monitoring sensors

Vettoretti M.;Cappon G.;Facchinetti A.;Sparacino G.
2020

Abstract

Wearable continuous glucose monitoring (CGM) sensors are revolutionizing the treatment of type 1 diabetes (T1D). These sensors provide in real-time, every 1–5 min, the current blood glucose concentration and its rate-of-change, two key pieces of information for improving the determination of exogenous insulin administration and the prediction of forthcoming adverse events, such as hypo-/hyper-glycemia. The current research in diabetes technology is putting considerable effort into developing decision support systems for patient use, which automatically analyze the patient’s data collected by CGM sensors and other portable devices, as well as providing personalized recommendations about therapy adjustments to patients. Due to the large amount of data collected by patients with T1D and their variety, artificial intelligence (AI) techniques are increasingly being adopted in these decision support systems. In this paper, we review the state-of-the-art methodologies using AI and CGM sensors for decision support in advanced T1D management, including techniques for personalized insulin bolus calculation, adaptive tuning of bolus calculator parameters and glucose prediction.
2020
File in questo prodotto:
File Dimensione Formato  
sensors-20-03870-v2.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3356570
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 51
  • OpenAlex ND
social impact