Saturation diving allows divers to reduce the risk of decompression sickness while working at depth for prolonged periods but may increase reactive oxygen species (ROS) production. Such modifications can affect endothelial function by exacerbating oxidative stress. This study investigated the effects of saturation diving on oxidative stress damage. Redox status was evaluated through: ROS production; total antioxidant capacity (TAC); nitric oxide metabolites (NOx); nitrotyrosine (3-NT); and lipid peroxidation (8-iso-PGF2α) assessment. Creatinine and neopterin were analyzed as markers of renal function and damage. Measurements were performed on saliva and urine samples obtained at four time points: pre; deep; post; and 24 h post. Four divers were included in the study. After the saturation dive (post), significant (p < 0.05) increases in ROS (0.12 ± 0.03 vs. 0.36 ± 0.06 µmol.min−1), TAC (1.88 ± 0.03 vs. 2.01 ± 0.08 mM), NOx (207.0 ± 103.3 vs. 441.8 ± 97.3 µM), 3-NT (43.32 ± 18.03 vs. 18.64 ± 7.45 nM·L−1), and 8-iso-PGF2α (249.7 ± 45.1 vs. 371.9 ± 54.9 pg·mg−1 creatinine) were detected. Markers of renal damage were increased as well after the end of the saturation dive (creatinine 0.54 ± 0.22 vs. 2.72 ± 1.12 g-L−1; neopterin 73.3 ± 27.9 vs. 174.3 ± 20.53 µmol·mol−1 creatinine). These results could ameliorate commercial or military diving protocols or improve the understanding of symptoms caused by oxygen level elevation.
Change in Oxidative Stress Biomarkers During 30 Days in Saturation Dive: A Pilot Study
Federica D'Alessandro;Matteo Paganini
;Danilo Cialoni;Gerardo Bosco
2020
Abstract
Saturation diving allows divers to reduce the risk of decompression sickness while working at depth for prolonged periods but may increase reactive oxygen species (ROS) production. Such modifications can affect endothelial function by exacerbating oxidative stress. This study investigated the effects of saturation diving on oxidative stress damage. Redox status was evaluated through: ROS production; total antioxidant capacity (TAC); nitric oxide metabolites (NOx); nitrotyrosine (3-NT); and lipid peroxidation (8-iso-PGF2α) assessment. Creatinine and neopterin were analyzed as markers of renal function and damage. Measurements were performed on saliva and urine samples obtained at four time points: pre; deep; post; and 24 h post. Four divers were included in the study. After the saturation dive (post), significant (p < 0.05) increases in ROS (0.12 ± 0.03 vs. 0.36 ± 0.06 µmol.min−1), TAC (1.88 ± 0.03 vs. 2.01 ± 0.08 mM), NOx (207.0 ± 103.3 vs. 441.8 ± 97.3 µM), 3-NT (43.32 ± 18.03 vs. 18.64 ± 7.45 nM·L−1), and 8-iso-PGF2α (249.7 ± 45.1 vs. 371.9 ± 54.9 pg·mg−1 creatinine) were detected. Markers of renal damage were increased as well after the end of the saturation dive (creatinine 0.54 ± 0.22 vs. 2.72 ± 1.12 g-L−1; neopterin 73.3 ± 27.9 vs. 174.3 ± 20.53 µmol·mol−1 creatinine). These results could ameliorate commercial or military diving protocols or improve the understanding of symptoms caused by oxygen level elevation.File | Dimensione | Formato | |
---|---|---|---|
Mrakic-sposta S - Int J Environ Res Public (2020) Change in Oxidative Stress Biomarkers During 30 Days in Saturation Dive A Pilot Study.pdf
accesso aperto
Descrizione: Fulltext
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
773.94 kB
Formato
Adobe PDF
|
773.94 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.