Milk urea nitrogen (MUN), a trait routinely measured in the national milk recording system, is a useful indicator of nitrogen utilization efficiency of dairy cows, and selection for MUN and MUN-derived traits could be a valid strategy to produce better animals with regard to efficiency of nitrogen utilization. Therefore, the aim of the present study was to explore the genetic aspects of MUN and new potential indicators of nitrogen efficiency, namely ratios of protein to MUN, casein to MUN, and whey protein to MUN, in the Italian Brown Swiss population. A total of 153,175 test-day records of 10,827 cows in 500 herds were used for genetic analysis. Variance components and heritability of the investigated traits were estimated using single-trait repeatability animal models, whereas genetic and phenotypic correlations between the traits were estimated through bivariate repeatability animal models, including fixed effects of herd-test-date, stage of lactation, parity, calving year, and calving season, and the random effects of additive genetic animal, cow permanent environment, and the residual. Heritability estimates for MUN (0.20 ± 0.01) and the 3 new indicators of nitrogen utilization efficiency (0.15 ± 0.01 for protein-to-MUN and casein-to-MUN ratios, and 0.12 ± 0.01 for ratio of whey protein to MUN) suggested that additive genetic variation exists for these traits, and thus there is potential to select for greater organic nitrogen and lower inorganic nitrogen in milk. Genetic association between MUN and the 3 ratios was high (−0.87 ± 0.01) but not unity, suggesting that ratios could provide some further information beyond that provided by MUN with regard to efficiency of nitrogen utilization. Genetic trend of the investigated traits by year of birth of Brown Swiss sires showed how the selection applied in the last 30 yr has led to an increase of both quantity and quality of milk, and a decrease of somatic cell score and MUN. The inclusion of MUN in breeding programs could speed up the process of increasing organic nitrogen such as protein, which is useful for cheese-making, and reducing inorganic nitrogen (MUN) in milk.
Short communication: Genetic aspects of milk urea nitrogen and new indicators of nitrogen efficiency in dairy cows
Bobbo T.;Penasa M.
;Cassandro M.
2020
Abstract
Milk urea nitrogen (MUN), a trait routinely measured in the national milk recording system, is a useful indicator of nitrogen utilization efficiency of dairy cows, and selection for MUN and MUN-derived traits could be a valid strategy to produce better animals with regard to efficiency of nitrogen utilization. Therefore, the aim of the present study was to explore the genetic aspects of MUN and new potential indicators of nitrogen efficiency, namely ratios of protein to MUN, casein to MUN, and whey protein to MUN, in the Italian Brown Swiss population. A total of 153,175 test-day records of 10,827 cows in 500 herds were used for genetic analysis. Variance components and heritability of the investigated traits were estimated using single-trait repeatability animal models, whereas genetic and phenotypic correlations between the traits were estimated through bivariate repeatability animal models, including fixed effects of herd-test-date, stage of lactation, parity, calving year, and calving season, and the random effects of additive genetic animal, cow permanent environment, and the residual. Heritability estimates for MUN (0.20 ± 0.01) and the 3 new indicators of nitrogen utilization efficiency (0.15 ± 0.01 for protein-to-MUN and casein-to-MUN ratios, and 0.12 ± 0.01 for ratio of whey protein to MUN) suggested that additive genetic variation exists for these traits, and thus there is potential to select for greater organic nitrogen and lower inorganic nitrogen in milk. Genetic association between MUN and the 3 ratios was high (−0.87 ± 0.01) but not unity, suggesting that ratios could provide some further information beyond that provided by MUN with regard to efficiency of nitrogen utilization. Genetic trend of the investigated traits by year of birth of Brown Swiss sires showed how the selection applied in the last 30 yr has led to an increase of both quantity and quality of milk, and a decrease of somatic cell score and MUN. The inclusion of MUN in breeding programs could speed up the process of increasing organic nitrogen such as protein, which is useful for cheese-making, and reducing inorganic nitrogen (MUN) in milk.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.