In healthy individuals, increasing cognitive load induces an asymmetric deployment of visuospatial attention, which favors the right visual space. To date, the neural mechanisms of this left/right attentional asymmetry are poorly understood. The aim of the present study was thus to investigate whether a left/right asymmetry under high cognitive load is due to a shift in the interhemispheric balance between the left and right posterior parietal cortices (PPCs), favoring the left PPC. To this end, healthy participants completed a visuospatial attention detection task under low and high cognitive load, whilst undergoing biparietal transcranial direct current stimulation (tDCS). Three different tDCS conditions were applied in a within-subjects design: sham, anodal left/cathodal right, and cathodal left/anodal right stimulation. The results revealed a left/right attentional asymmetry under high cognitive load in the sham condition. This asymmetry disappeared during cathodal left/anodal right tDCS, yet was not influenced by anodal left/cathodal right tDCS. There were no left/right asymmetries under low cognitive load in any of the conditions. Overall, these findings demonstrate that attentional asymmetries under high cognitive load can be modulated in a polarity-specific fashion by means of tDCS. They thus support the assumption that load-related asymmetries in visuospatial attention are influenced by interhemispheric balance mechanisms between the left and right PPCs.
The Impact of Cognitive Load on the Spatial Deployment of Visual Attention: Testing the Role of Interhemispheric Balance With Biparietal Transcranial Direct Current Stimulation
Bonato M.;
2020
Abstract
In healthy individuals, increasing cognitive load induces an asymmetric deployment of visuospatial attention, which favors the right visual space. To date, the neural mechanisms of this left/right attentional asymmetry are poorly understood. The aim of the present study was thus to investigate whether a left/right asymmetry under high cognitive load is due to a shift in the interhemispheric balance between the left and right posterior parietal cortices (PPCs), favoring the left PPC. To this end, healthy participants completed a visuospatial attention detection task under low and high cognitive load, whilst undergoing biparietal transcranial direct current stimulation (tDCS). Three different tDCS conditions were applied in a within-subjects design: sham, anodal left/cathodal right, and cathodal left/anodal right stimulation. The results revealed a left/right attentional asymmetry under high cognitive load in the sham condition. This asymmetry disappeared during cathodal left/anodal right tDCS, yet was not influenced by anodal left/cathodal right tDCS. There were no left/right asymmetries under low cognitive load in any of the conditions. Overall, these findings demonstrate that attentional asymmetries under high cognitive load can be modulated in a polarity-specific fashion by means of tDCS. They thus support the assumption that load-related asymmetries in visuospatial attention are influenced by interhemispheric balance mechanisms between the left and right PPCs.File | Dimensione | Formato | |
---|---|---|---|
Paladini et al 2020 Front Neurosci.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
434.57 kB
Formato
Adobe PDF
|
434.57 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.