We present MiSoSouP, a suite of algorithms for extracting high-quality approximations of the most interesting subgroups, according to different popular interestingness measures, from a random sample of a transactional dataset. We describe a new formulation of these measures as functions of averages, that makes it possible to approximate them using sampling. We then discuss how pseudodimension, a key concept from statistical learning theory, relates to the sample size needed to obtain an high-quality approximation of the most interesting subgroups. We prove an upper bound on the pseudodimension of the problem at hand, which depends on characteristic quantities of the dataset and of the language of patterns of interest. This upper bound then leads to small sample sizes. Our evaluation on real datasets shows that MiSoSouP outperforms state-of-the-art algorithms offering the same guarantees, and it vastly speeds up the discovery of subgroups w.r.t. analyzing the whole dataset.
MiSoSouP: Mining Interesting Subgroups with Sampling and Pseudodimension
Fabio Vandin
2020
Abstract
We present MiSoSouP, a suite of algorithms for extracting high-quality approximations of the most interesting subgroups, according to different popular interestingness measures, from a random sample of a transactional dataset. We describe a new formulation of these measures as functions of averages, that makes it possible to approximate them using sampling. We then discuss how pseudodimension, a key concept from statistical learning theory, relates to the sample size needed to obtain an high-quality approximation of the most interesting subgroups. We prove an upper bound on the pseudodimension of the problem at hand, which depends on characteristic quantities of the dataset and of the language of patterns of interest. This upper bound then leads to small sample sizes. Our evaluation on real datasets shows that MiSoSouP outperforms state-of-the-art algorithms offering the same guarantees, and it vastly speeds up the discovery of subgroups w.r.t. analyzing the whole dataset.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.