For a class of finite horizon first order mean field games and associated N-player games, we give a simple proof of convergence of symmetric N-player Nash equilibria in distributed open-loop strategies to solutions of the mean field game in Lagrangian form. Lagrangian solutions are then connected with those determined by the usual mean field game system of two coupled first order PDEs, and convergence of Nash equilibria in distributed Markov strategies is established.

On the Asymptotic Nature of First Order Mean Field Games

Fischer, Markus
;
2021

Abstract

For a class of finite horizon first order mean field games and associated N-player games, we give a simple proof of convergence of symmetric N-player Nash equilibria in distributed open-loop strategies to solutions of the mean field game in Lagrangian form. Lagrangian solutions are then connected with those determined by the usual mean field game system of two coupled first order PDEs, and convergence of Nash equilibria in distributed Markov strategies is established.
File in questo prodotto:
File Dimensione Formato  
Fischer - Silva AMO84-2021.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 523.85 kB
Formato Adobe PDF
523.85 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3351030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact