Task-switching paradigms, which involve task repetitions and between-task switches, have long been used as a benchmark of cognitive control processes. When mixed and single-task blocks are presented, two types of costs usually occur: the switch cost, measured by contrasting performance on switch and repeat trials during the mixed-task blocks, and the mixing cost, calculated as the performance difference between the all-repeat trials from the single-task blocks and the repeat trials from the mixed-task blocks. Both costs can be mitigated by informational cues that signal the upcoming task switch beforehand. Recent electroencephalographic studies have started unveiling the brain oscillatory activity underlying the switch cost during the preparatory cue-target interval, thus, targeting proactive control processes. Less attention has instead been paid to the mixing cost and, importantly, to the oscillatory dynamics involved in switch and mixing costs during reactive control. To fill this gap, here, we analyzed the time-frequency data obtained during a task-switching paradigm wherein the simultaneous presentation of task cues and targets increased the need for reactive control. Results showed that while alpha and beta bands were modulated by switch and mixing costs in a similar gradual fashion, with greater suppression going from switch to repeat and all-repeat trials, theta power was sensitive to the switch cost with increased power for switch than repeat trials. Together, our findings join previous studies underlining the importance of theta, alpha and beta oscillations in task-switching and extend them by depicting the oscillations involved in switch and mixing costs during reactive control processes.
Brain oscillatory activity associated with switch and mixing costs during reactive control
Capizzi M.
;Ambrosini E.;Arbula S.;Vallesi A.
2020
Abstract
Task-switching paradigms, which involve task repetitions and between-task switches, have long been used as a benchmark of cognitive control processes. When mixed and single-task blocks are presented, two types of costs usually occur: the switch cost, measured by contrasting performance on switch and repeat trials during the mixed-task blocks, and the mixing cost, calculated as the performance difference between the all-repeat trials from the single-task blocks and the repeat trials from the mixed-task blocks. Both costs can be mitigated by informational cues that signal the upcoming task switch beforehand. Recent electroencephalographic studies have started unveiling the brain oscillatory activity underlying the switch cost during the preparatory cue-target interval, thus, targeting proactive control processes. Less attention has instead been paid to the mixing cost and, importantly, to the oscillatory dynamics involved in switch and mixing costs during reactive control. To fill this gap, here, we analyzed the time-frequency data obtained during a task-switching paradigm wherein the simultaneous presentation of task cues and targets increased the need for reactive control. Results showed that while alpha and beta bands were modulated by switch and mixing costs in a similar gradual fashion, with greater suppression going from switch to repeat and all-repeat trials, theta power was sensitive to the switch cost with increased power for switch than repeat trials. Together, our findings join previous studies underlining the importance of theta, alpha and beta oscillations in task-switching and extend them by depicting the oscillations involved in switch and mixing costs during reactive control processes.File | Dimensione | Formato | |
---|---|---|---|
CapizzietalPsychophysiology2020.pdf
non disponibili
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.