The present paper shows the background analysis to develop the optimization strategy of a neighborhood heating network sited in Padua, including it in a wider project of district renovation. The case study accounts several different end users: scholastic and offices buildings, a social housing residence and residential buildings. The analysis starts from a systematic assessment of the buildings, evaluating the need of refurbishment of the envelope and of the distribution system. Further analysis focuses on the optimization of the existing heat generation system, integrating three condensing boilers, with an air to water heat pump and a ground source heat pump, which work more efficiently during base-load periods. The management of the district heating network have been investigated using the dynamic simulation tool TRNSYS, the control strategy of the delivery temperature has been tested based on the outside temperature and verifying to satisfy comfort conditions inside the buildings. A sustainable solution is the recovery and drainage of rainwater, that can be reused for the toilets' flushing. Therefore, the project solution identified aims at a more rational use of energy sources, which is the simplest and cheapest way to proceed on the decarbonization path that is a mid-term target for the Padua administration.
Hypothesis for a more efficient and sustainable development of a district heating in Padova, integrating renewable energies and existing generation plant
Carnieletto L.
;Graci S.;De Carli M.
2019
Abstract
The present paper shows the background analysis to develop the optimization strategy of a neighborhood heating network sited in Padua, including it in a wider project of district renovation. The case study accounts several different end users: scholastic and offices buildings, a social housing residence and residential buildings. The analysis starts from a systematic assessment of the buildings, evaluating the need of refurbishment of the envelope and of the distribution system. Further analysis focuses on the optimization of the existing heat generation system, integrating three condensing boilers, with an air to water heat pump and a ground source heat pump, which work more efficiently during base-load periods. The management of the district heating network have been investigated using the dynamic simulation tool TRNSYS, the control strategy of the delivery temperature has been tested based on the outside temperature and verifying to satisfy comfort conditions inside the buildings. A sustainable solution is the recovery and drainage of rainwater, that can be reused for the toilets' flushing. Therefore, the project solution identified aims at a more rational use of energy sources, which is the simplest and cheapest way to proceed on the decarbonization path that is a mid-term target for the Padua administration.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.